Significance Bacteria possess many regulatory systems to monitor their environment and adapt their physiology accordingly. Whereas most systems sense one specific signal, the general stress response (GSR) is activated by many signals and protects cells against a wide range of adverse conditions. In Alphaproteobacteria, the GSR is controlled by the response regulator PhyR, but little is known about the upstream pathways. Here, we establish the GSR as a complex regulatory network composed of a particular family of partially redundant sensor kinases and of additional response regulators that modulate PhyR activity in Sphingomonas melonis . Given the broad conservation of this kinase family, it is possible that it plays a general role in the GSR in Alphaproteobacteria.
Summary The causative agent of Legionnaires' disease, Legionella pneumophila, colonizes amoebae and biofilms in the environment. The opportunistic pathogen employs the Lqs (Legionella quorum sensing) system and the signalling molecule LAI‐1 (Legionella autoinducer‐1) to regulate virulence, motility, natural competence and expression of a 133 kb genomic “fitness island”, including a putative novel regulator. Here, we show that the regulator termed LvbR is an LqsS‐regulated transcription factor that binds to the promoter of lpg1056/hnox1 (encoding an inhibitor of the diguanylate cyclase Lpg1057), and thus, regulates proteins involved in c‐di‐GMP metabolism. LvbR determines biofilm architecture, since L. pneumophila lacking lvbR accumulates less sessile biomass and forms homogeneous mat‐like structures, while the parental strain develops more compact bacterial aggregates. Comparative transcriptomics of sessile and planktonic ΔlvbR or ΔlqsR mutant strains revealed concerted (virulence, fitness island, metabolism) and reciprocally (motility) regulated genes in biofilm and broth respectively. Moreover, ΔlvbR is hyper‐competent for DNA uptake, defective for phagocyte infection, outcompeted by the parental strain in amoebae co‐infections and impaired for cell migration inhibition. Taken together, our results indicate that L. pneumophila LvbR is a novel pleiotropic transcription factor, which links the Lqs and c‐di‐GMP regulatory networks to control biofilm architecture and pathogen–host cell interactions.
The ubiquitous Gram-negative bacterium Legionella pneumophila parasitizes environ mental amoebae and, upon inhalation, replicates in alveolar macrophages, thus causing a life-threatening pneumonia called “Legionnaires’ disease.” The opportunistic pathogen employs a bi-phasic life cycle, alternating between a replicative, non-virulent phase and a stationary, transmissive/virulent phase. L. pneumophila employs the Lqs (Legionella quorum sensing) system as a major regulator of the growth phase switch. The Lqs system comprises the autoinducer synthase LqsA, the homologous sensor kinases LqsS and LqsT, as well as a prototypic response regulator termed LqsR. These components produce, detect, and respond to the α-hydroxyketone signaling molecule LAI-1 (Legionella autoinducer-1, 3-hydroxypentadecane-4-one). LAI-1-mediated signal transduction through the sensor kinases converges on LqsR, which dimerizes upon phosphorylation. The Lqs system regulates the bacterial growth phase switch, pathogen-host cell interactions, motility, natural competence, filament production, and expression of a chromosomal “fitness island.” Yet, LAI-1 not only mediates bacterial intra-species signaling, but also modulates the motility of eukaryotic cells through the small GTPase Cdc42 and thus promotes inter-kingdom signaling. Taken together, the low molecular weight compound LAI-1 produced by L. pneumophila and sensed by the bacteria as well as by eukaryotic cells plays a major role in pathogen-host cell interactions.
Bialaphos resistance (BAR) and phosphinothricin acetyltransferase (PAT) genes, which convey resistance to the broad-spectrum herbicide phosphinothricin (also known as glufosinate) via N-acetylation, have been globally used in basic plant research and genetically engineered crops . Although early in vitro enzyme assays showed that recombinant BAR and PAT exhibit substrate preference toward phosphinothricin over the 20 proteinogenic amino acids , indirect effects of BAR-containing transgenes in planta, including modified amino acid levels, have been seen but without the identification of their direct causes . Combining metabolomics, plant genetics and biochemical approaches, we show that transgenic BAR indeed converts two plant endogenous amino acids, aminoadipate and tryptophan, to their respective N-acetylated products in several plant species. We report the crystal structures of BAR, and further delineate structural basis for its substrate selectivity and catalytic mechanism. Through structure-guided protein engineering, we generated several BAR variants that display significantly reduced non-specific activities compared with its wild-type counterpart in vivo. The transgenic expression of enzymes can result in unintended off-target metabolism arising from enzyme promiscuity. Understanding such phenomena at the mechanistic level can facilitate the design of maximally insulated systems featuring heterologously expressed enzymes.
The general stress response (GSR) allows bacteria to monitor and defend against a broad set of unrelated, adverse environmental conditions. In Alphaproteobacteria, the key step in GSR activation is phosphorylation of the response regulator PhyR. In Sphingomonas melonis Fr1, seven PhyR-activating kinases (Paks), PakA to PakG, are thought to directly phosphorylate PhyR under different stress conditions, but the nature of the activating signals remains obscure. PakF, a major sensor of NaCl and heat shock, lacks a putative sensor domain but instead harbors a single receiver (REC) domain (PakF REC ) N-terminal to its kinase catalytic core. Such kinases are called "hybrid response regulators" (HRRs). How HRRs are able to perceive signals in the absence of a true sensor domain has remained largely unexplored. In the present work, we show that stresses are actually sensed by another kinase, KipF (kinase of PakF), which phosphorylates PakF REC and thereby activates PakF. KipF is a predicted transmembrane kinase, harboring a periplasmic CHASE3 domain flanked by two transmembrane helices in addition to its cytoplasmic kinase catalytic core. We demonstrate that KipF senses different salts through its CHASE3 domain but is not a sensor of general osmotic stress. While salt sensing depends on the CHASE3 domain, heat shock sensing does not, suggesting that these stresses are perceived by different mechanisms. In summary, our results establish a two-tiered histidine kinase pathway involved in activation of the GSR in S. melonis Fr1 and provide the first experimental evidence for the so far uncharacterized CHASE3 domain as a salt sensor. IMPORTANCEHybrid response regulators (HRRs) represent a particular class of histidine kinases harboring an N-terminal receiver (REC) domain instead of a true sensor domain. This suggests that the actual input for HRRs may be phosphorylation of the REC domain. In the present study, we addressed this question by using the HRR PakF. Our results suggest that PakF is activated through phosphorylation of its REC domain and that this is achieved by another kinase, KipF. KipF senses heat shock and salt stress, with the latter requiring the periplasmic CHASE3 domain. This work not only suggests that HRRs work in two-tiered histidine kinase pathways but also provides the first experimental evidence for a role of the so far uncharacterized CHASE3 domain in salt sensing. Many bacteria possess a so-called general stress response (GSR) that allows them to monitor a broad range of stressful conditions and to launch an appropriate response to adapt to adverse environments. In Alphaproteobacteria, the GSR is controlled by an alternative sigma factor, EcfG , whose activity is regulated via a partner-switching mechanism (1, 2). Under nonstress conditions, EcfG is inactivated by binding to the anti-sigma factor NepR. Upon stress, NepR is sequestered by the anti-anti-sigma factor PhyR, thereby releasing EcfG and allowing it to activate transcription of stress-related genes. PhyR is a response regulator, and a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.