Proteogenomics combines proteomics, genomics, and transcriptomics and has considerably improved genome annotation in poorly investigated phylogenetic groups for which homology information is lacking. Furthermore, it can be advantageous when reinvestigating well-annotated genomes. Here, we applied an advanced proteogenomics approach, combining standard proteogenomics with peptidede novosequencing, to refine annotation of the well-studied model fungusSordaria macrospora. We investigated samples from different developmental and physiological conditions, resulting in the detection of 104 so-far hidden proteins and annotation changes in 575 genes, including 389 splice site refinements. Significantly, our approach provides peptide-level evidence for 113 single-amino-acid variations and 15 C-terminal protein elongations originating from A-to-I RNA editing, a phenomenon recently detected in fungi. Coexpression and phylostratigraphic analysis of the refined proteome suggest that new functions in evolutionarily young genes correlate with distinct developmental stages. In conclusion, our advanced proteogenomics approach supports and promotes functional studies of fungal model systems.IMPORTANCENext-generation sequencing techniques have considerably increased the number of completely sequenced eukaryotic genomes. These genomes are mostly automatically annotated, andab initiogene prediction is commonly combined with homology-based search approaches and often supported by transcriptomic data. The latter in particular improve the prediction of intron splice sites and untranslated regions. However, correct prediction of translation initiation sites (TIS), alternative splice junctions, and protein-coding potential remains challenging. Here, we present an advanced proteogenomics approach, namely, the combination of proteogenomics andde novopeptide sequencing analysis, in conjunction with Blast2GO and phylostratigraphy. Using the model fungusSordaria macrosporaas an example, we provide a comprehensive view of the proteome that not only increases the functional understanding of this multicellular organism at different developmental stages but also immensely enhances the genome annotation quality.
The highly conserved striatin‐interacting phosphatases and kinases (STRIPAK) complex regulates phosphorylation/dephosphorylation of developmental proteins in eukaryotic microorganisms, animals and humans. To first identify potential targets of STRIPAK, we performed extensive isobaric tags for relative and absolute quantification‐based proteomic and phosphoproteomic analyses in the filamentous fungus Sordaria macrospora. In total, we identified 4,193 proteins and 2,489 phosphoproteins, which are represented by 10,635 phosphopeptides. By comparing phosphorylation data from wild type and mutants, we identified 228 phosphoproteins to be regulated in all three STRIPAK mutants, thus representing potential targets of STRIPAK. To provide an exemplarily functional analysis of a STRIPAK‐dependent phosphorylated protein, we selected CLA4, a member of the conserved p21‐activated kinase family. Functional characterization of the ∆cla4 deletion strain showed that CLA4 controls sexual development and polarized growth. To determine the functional relevance of CLA4 phosphorylation and the impact of specific phosphorylation sites on development, we next generated phosphomimetic and ‐deficient variants of CLA4. This analysis identified (de)phosphorylation of a highly conserved serine (S685) residue in the catalytic domain of CLA4 as being important for fungal cellular development. Collectively, these analyses significantly contribute to the understanding of the mechanistic function of STRIPAK as a phosphatase and kinase signaling complex.
The striatin-interacting phosphatase and kinase (STRIPAK) multi-subunit signaling complex is highly conserved within eukaryotes. In fungi, STRIPAK controls multicellular development, morphogenesis, pathogenicity, and cell-cell recognition, while in humans, certain diseases are related to this signaling complex. To date, phosphorylation and dephosphorylation targets of STRIPAK are still widely unknown in microbial as well as animal systems. Here, we provide an extended global proteome and phosphoproteome study using the wild type as well as STRIPAK single and double deletion mutants (Δpro11, Δpro11Δpro22,
During the sexual life cycle of filamentous fungi, multicellular fruiting bodies are generated for the dispersal of spores. The filamentous ascomycete Sordaria macrospora has a long history as a model system for studying fruiting body formation, and two collections of sterile mutants have been generated. However, for most of these mutants, the underlying genetic defect remains unknown. Here, we investigated the mutant spadix (spd) that was generated by X-ray mutagenesis in the 1950s and terminates sexual development after the formation of pre-fruiting bodies (protoperithecia). We sequenced the spd genome and found a 22 kb deletion affecting four genes, which we termed spd1-4. Generation of deletion strains revealed that only spd4 is required for fruiting body formation. Although sterility in S. macrospora is often coupled with a vegetative hyphal fusion defect, Δspd4 was still capable of fusion. This feature distinguishes SPD4 from many other regulators of sexual development. Remarkably, GFP-tagged SPD4 accumulated in the nuclei of vegetative hyphae and fruiting body initials, the ascogonial coils, but not in sterile tissue from the developing protoperithecium. Our results point to SPD4 as a specific determinant of fruiting body formation. Research on SPD4 will, therefore, contribute to understanding cellular reprogramming during initiation of sexual development in fungi.
Sexual and asexual development in filamentous ascomycetes is controlled by components of conserved signaling pathways. Here, we investigated the development of mutant strains lacking genes for kinases MAK2, MEK2, and MIK2, as well as the scaffold protein HAM5 of the pheromone response (PR) pathway. All had a defect in fruiting body development and hyphal fusion. Another phenotype was a defect in melanin-dependent ascospore germination. However, this deficiency was observed only in kinase deletion mutants, but not in strains lacking HAM5. Notably, the same developmental phenotypes were previously described for nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1) mutants, but the germination defect was only seen in NOX2 mutants. These data suggest a molecular link between the pheromone signaling pathway and both NOX complexes. Using data from yeast two-hybrid (Y2H) analysis, we found that the scaffolding protein HAM5 interacts with NOR1, the regulator of NOX1 and NOX2 complexes. This interaction was further confirmed using differently fluorescent-labeled proteins to demonstrate that NOR1 and HAM5 co-localize at cytoplasmic spots and tips of mature hyphae. This observation was supported by phenotypic characterization of single and double mutants. The oxidative stress response and the initiation of fruiting bodies were similar in Δham5Δnor1 and Δham5, but distinctly reduced in Δnor1, indicating that the double deletion leads to a partial suppression of the Δnor1 phenotype. We conclude that the PR and NOX1 complexes are connected by direct interaction between HAM5 and NOR1. In contrast, PR kinases are linked to the NOX2 complex without participation of HAM5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.