Objective long-term health monitoring can improve the clinical management of several medical conditions ranging from cardiopulmonary diseases to motor disorders. In this paper, we present our work toward the development of a home-monitoring system. The system is currently used to monitor patients with Parkinson's disease who experience severe motor fluctuations. Monitoring is achieved using wireless wearable sensors whose data are relayed to a remote clinical site via a web-based application. The work herein presented shows that wearable sensors combined with a web-based application provide reliable quantitative information that can be used for clinical decision making.
This paper examines the benefits of edge miningdata mining that takes place on the wireless, battery-powered, smart sensing devices that sit at the edge points of the Internet of Things. Through local data reduction and transformation, edge mining can quantifiably reduce the number of packets that must be sent, reducing energy usage and remote storage requirements. Additionally, edge mining has the potential to reduce the risk to personal privacy through embedding of information requirements at the sensing point, limiting inappropriate use. The benefits of edge mining are examined with respect to three specific algorithms: Linear Spanish Inquisition Protocol (L-SIP), ClassAct, and Bare Necessities (BN), which are all instantiations of General SIP (G-SIP). In general, the benefits provided by edge mining are related to the predictability of data streams and availability of precise information requirements; results show that L-SIP typically reduces packet transmission by around 95% (20-fold), BN reduces packet transmission by 99.98% (5000fold) and ClassAct reduces packet transmission by 99.6% (250fold). Although energy reduction is not as radical due to other overheads, minimisation of these overheads can lead to up to a 10-fold battery life extension for L-SIP, for example. These results demonstrate the importance of edge mining to the feasibility of many IoT applications.
This letter introduces MercuryLive, a platform to enable home monitoring of patients with Parkinson's disease (PD) using wearable sensors. MercuryLive contains three tiers: a resource-aware data collection engine that relies upon wearable sensors, web services for live streaming and storage of sensor data, and a web-based graphical user interface client with video conferencing capability. Besides, the platform has the capability of analyzing sensor (i.e., accelerometer) data to reliably estimate clinical scores capturing the severity of tremor, bradykinesia, and dyskinesia. Testing results showed an average data latency of less than 400 ms and video latency of about 200 ms with video frame rate of about 13 frames/s when 800 kb/s of bandwidth were available and we used a 40% video compression, and data feature upload requiring 1 min of extra time following a 10 min interactive session. These results indicate that the proposed platform is suitable to monitor patients with PD to facilitate the titration of medications in the late stages of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.