BackgroundLassa and Junín viruses are the most prominent members of the Arenaviridae family of viruses that cause viral hemorrhagic fever syndromes Lassa fever and Argentine hemorrhagic fever, respectively. At present, ribavirin is the only antiviral drug indicated for use in treatment of these diseases, but because of its limited efficacy in advanced cases of disease and its toxicity, safer and more effective antivirals are needed.Methodology/Principal FindingsHere, we used a model of acute arenaviral infection in outbred guinea pigs based on challenge with an adapted strain of Pichindé virus (PICV) to further preclinical development of T-705 (Favipiravir), a promising broad-spectrum inhibitor of RNA virus infections. The guinea pig-adapted passage 19 PICV was uniformly lethal with an LD50 of ∼5 plaque-forming units and disease was associated with fever, weight loss, thrombocytopenia, coagulation defects, increases in serum aspartate aminotransferase (AST) concentrations, and pantropic viral infection. Favipiravir (300 mg/kg/day, twice daily orally for 14 days) was highly effective, as all animals recovered fully from PICV-induced disease even when therapy was initiated one week after virus challenge when animals were already significantly ill with marked fevers and thrombocytopenia. Antiviral activity and reduced disease severity was evidenced by dramatic reductions in peak serum virus titers and AST concentrations in favipiravir-treated animals. Moreover, a sharp decrease in body temperature was observed shortly after the start of treatment. Oral ribavirin was also evaluated, and although effective, the slower rate of recovery may be a sign of the drug's known toxicity.Conclusions/SignificanceOur findings support further development of favipiravir for the treatment of severe arenaviral infections. The optimization of the experimental favipiravir treatment regimen in the PICV guinea pig model will inform critical future studies in the same species based on challenge with highly pathogenic arenaviruses such as Lassa and Junín.
The TC-83 vaccine strain of Venezuelan equine encephalitis virus (VEEV) causes encephalitis and death in C3H/HeN mice infected by intranasal (i.n.) instillation. Since TC-83 is exempt as a select agent, this mouse model was used in the evaluation of antiviral therapies. Virus titers in the brains of infected mice peaked on 4 dpi and persisted at high levels until death at 9.4+/-0.5 dpi. Mouse brains appeared histologically normal on 2 dpi, but developed meningoencephalitis, neuropil vacuolation, and gliosis by 8 dpi. Results from a protein cytokine array showed significant elevations over time in interleukin (IL)-1alpha, IL-1beta, IL-6, IL-12, MCP-1, IFNgamma, TNFalpha, MIP-1alpha, and RANTES in homogenized brain samples of infected mice. Immunohistochemical staining showed a colocalization of viral antigen with neuron markers. Treatment with interferon-alpha B/D or ampligen significantly improved survival, brain virus titer and cytokine levels, mean day-to-death, and weight change in infected mice. The time-course of infection and disease parameters of mice infected with TC-83 VEEV were similar in many ways to disease parameters in mice infected with other VEEV strains. Thus, infection of C3H/HeN mice with TC-83 VEEV may serve as a suitable model for the evaluation of antiviral compounds for the treatment of this viral disease.
To investigate the hypothesis that neurological sequelae are associated with persistent West Nile virus (WNV) and neuropathology, we developed an electrophysiological motor unit number estimation (MUNE) assay to measure the health of motor neurons temporally in hamsters. The MUNE assay was successful in identifying chronic neuropathology in the spinal cords of infected hamsters. MUNE was suppressed at days 9 to 92 in hamsters injected subcutaneously with WNV, thereby establishing that a long-term neurological sequela does occur in the hamster model. MUNE suppression at day 10 correlated with the loss of neuronal function as indicated by reduced choline acetyltransferase staining (R 2 ؍ 0.91). Between days 10 and 26, some ␣-motor neurons had died, but further neuronal death was not detected beyond day 26. MUNE correlated with disease phenotype, because the lowest MUNE values were detected in paralyzed limbs. Persistent WNV RNA and foci of WNV envelope-positive cells were identified in the central nervous systems of all hamsters tested from 28 to 86 days. WNV-positive staining colocalized with the neuropathology, which suggested that persistent WNV or its products contributed to neuropathogenesis. These results established that persistent WNV product or its proteins cause dysfunction, that WNV is associated with chronic neuropathological lesions, and that this neurological sequela is effectively detected by MUNE. Inasmuch as WNV-infected humans can also experience a poliomyelitis-like disease where motor neurons are damaged, MUNE may also be a sensitive clinical or therapeutic marker for those patients.
Acute flaccid polio-like paralysis occurs during natural West Nile virus (WNV) infection in a subset of cases in animals and humans. To evaluate the pathology and the possibility for therapeutic intervention, the authors developed a model of acute flaccid paralysis by injecting WNV directly into the sciatic nerve or spinal cord of hamsters. By directly injecting selected sites of the nervous system with WNV, the authors mapped the lesions responsible for hind limb paralysis to the lumbar spinal cord. Immunohistochemical analysis of spinal cord sections from paralyzed hamsters revealed that WNV-infected neurons localized primarily to the ventral motor horn of the gray matter, consistent with the polio-like clinical presentation. Neuronal apoptosis and diminished cell function were identified by TUNEL (terminal deoxynucleotidyl transferase-mediated BrdUTP nick end labeling) and choline acetyltransferase staining, respectively. Administration of hE16, a potently neutralizing humanized anti-WNV monoclonal antibody, 2 to 3 days after direct WNV infection of the spinal cord, significantly reduced paralysis and mortality. Additionally, a single injection of hE16 as late as 5 days after WNV inoculation of the sciatic nerve also prevented paralysis. Overall, these experiments establish that WNV-induced acute flaccid paralysis in hamsters is due to neuronal infection and injury in the lumbar spinal cord and that treatment with a therapeutic antibody prevents paralysis when administered after WNV infection of spinal cord neurons.
Mycoplasmal infections may cause unusual initial clinical signs or an atypical history. When dairy cattle, including those residing in closed herds, have lameness, swelling of the carpal or metacarpophalangeal joints, edema of the distal portions of the forelimbs, or polyarthritis, infection with Mycoplasma spp should be investigated. Delay in diagnosis of mycoplasmal infections in dairy herds can result in substantial financial loss and the establishment of chronic subclinical carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.