Recent findings from the ISCoPe study indicate that, after severe contusion to the spinal cord, edema originating in the spinal cord accumulates and compresses the tissue against the surrounding dura mater, despite decompressive laminectomy. It is hypothesized that this compression results in restricted flow of cerebrospinal fluid (CSF) in the subarachnoid space and central canal and ultimately collapses local vasculature, exacerbating ischemia and secondary injury. Here we developed a surgically mounted osmotic transport device (OTD) that rests on the dura and can osmotically remove excess fluid at the injury site. Tests were performed in 4-h studies immediately following severe (250 kD) contusion at T8 in rats using the OTD. A 3-h treatment with the OTD after 1-h post injury significantly reduced spinal cord edema compared to injured controls. A first approximation mathematical interpretation implies that this modest reduction in edema may be significant enough to relieve compression of local vasculature and restore flow of CSF in the region. In addition, we determined the progression of edema up to 28 days after insult in the rat for the same injury model. Results showed peak edema at 72 h. These preliminary results suggest that incorporating the OTD to operate continuously at the site of injury throughout the critical period of edema progression, the device may significantly improve recovery following contusion spinal cord injury.
The free-solvent-based (FSB) model and osmotic pressure were used to probe the ion binding and protein hydration for self-crowded bovine serum albumin in 0.15 M NaF, NaCl, NaI, and NaSCN solutions. All experiments were conducted with solutions at pH 7.4. The regressed results of the FSB model behavior to the measured osmotic pressure were excellent, albeit, the osmotic pressure data for NaSCN were noisy. The resulting ion binding and hydration were realistic values and the covariance of the two parameters was exceptionally low, providing substantial credibility to the FSB model. The results showed that the kosmotropic F and neutral Cl solutions generated significantly higher ion binding and protein hydration than the chaotropic solutions of I and SCN. Further, the ionic strength ratio and resulting hydration implied that the chaotropic solutions had substantially higher aggregation than the other salts investigated. Overall, the FSB model provides an additional, complementary tool to contribute to the analysis of crowded protein solutions relative to anions in the Hofmeister series as it can interrogate crowded solutions directly; something that is not possible with many measurement techniques.
The membrane concentration osmometer coupled with multiple sample preparations has been used for over a century to determine a number of colloidal properties. At the dilute region, this method has been used to determine solute molecular mass. When the solution is proteinaceous, in the intermediate region, the osmotic pressure profile provides the second virial coefficient, useful for estimating protein crystallization and salting out. At the most crowded concentrations, it provides insight on protein hydration and protein-ion interaction. One of the most critical factors in generating the osmotic pressure profile is minimizing the quantity of protein used and reducing the error in preparing samples. Here, we introduce a membrane concentrating osmometer that allows one to measure osmotic pressure over a wide concentration range from a single sample. A test study was performed using the osmotic pressure profile of self-crowded bovine serum albumin (BSA) solutions. The resulting profile was in good agreement with previous data in the literature obtained from multiple sample studies. The osmotic pressure profile was further used with a free solvent-based (FSB) osmotic pressure model to determine protein hydration and ion binding. These results were in excellent agreement with literature values. This concentrating osmometer has several advantages over conventional concentration osmometer for obtaining the osmotic pressure profile for proteinaceous solutions; 1) the amount of protein required is significantly decreased, 2) the potential for experimental error in sample preparation diminishes, and, 3) the time for generating the osmotic pressure profile is substantially reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.