Most published proteomics studies of bulk plant tissues use a procedure in which proteins are precipitated with trichloroacetic acid (TCA) and acetone (TCA-A), but few attempts have been made to contrast this approach in a systematic way with alternative methods against a spectrum of tissues. To address this, TCA-A was compared with another acetone-based protocol (TCA-B) or a phenol (Phe)-based method, targeting a range of tomato tissues and three species of fruits that contain high levels of contaminating compounds: banana, avocado and orange. The Phe method gave a higher protein yield and typically greater resolution and spot intensity, particularly with extracts from tissues containing high levels of soluble polysaccharides. The methods also generated remarkably different two-dimensional gel electrophoresis (2-DE) protein spot patterns. Peptide mass fingerprinting was used to identify polypeptides that were common to multiple extracts or uniquely present in one extract type. While no clear pattern emerged to explain the basis for the differential protein extraction, it was noted that the Phe method showed enhanced extraction of glycoproteins. These results suggest that the Phe protocol is highly effective with more recalcitrant tissues and that a combination of TCA-A and Phe methods provides enhanced 2-DE based proteomic analyses of most plant tissues.
Major improvements in proteomic techniques in recent years have led to an increase in their application in all biological fields, including plant sciences. For all proteomic approaches, protein extraction and sample preparation are of utmost importance for optimal results; however, extraction of proteins from plant tissues represents a great challenge. Plant tissues usually contain relatively low amounts of proteins and high concentrations of proteases and compounds that potentially can limit tissue disintegration and interfere with subsequent protein separation and identification. An effective protein extraction protocol must also be adaptable to the great variation in the sets of secondary metabolites and potentially contaminating compounds that occurs between tissues (e.g., leaves, roots, fruit, seeds and stems) and between species. Here we present two basic protein extraction protocols that have successfully been used with diverse plant tissues, including recalcitrant tissues. The first method is based on phenol extraction coupled with ammonium acetate precipitation, and the second is based on trichloroacetic acid (TCA) precipitation. Both extraction protocols can be completed within 2 d.
SummaryThe study of complex biological questions through comparative proteomics is becoming increasingly attractive to plant biologists as the rapidly expanding plant genomic and expressed sequence tag databases provide improved opportunities for protein identification. This review focuses on practical issues associated with comparative proteomic analysis, including the challenges of effective protein extraction and separation from plant tissues, the pros and cons of two-dimensional gel-based analysis and the problems of identifying proteins from species that are not recognized models for functional genomic studies. Specific points are illustrated using data from an ongoing study of the tomato and pepper fruit proteomes.
SUMMARYIn plants, sterols play fundamental roles as membrane constituents in the biosynthesis of steroid hormones, and act as precursors for cell wall deposition. Sterols are synthesized in the endoplasmic reticulum (ER), but mainly accumulate in the plasma membrane. How sterols are trafficked in plant cells is largely unknown. In non-plant systems, oxysterol-binding proteins have been involved in sterol trafficking and homeostasis. There are at least twelve homologs of oxysterol-binding proteins in the Arabidopsis genome, but the biology of these proteins remains for the most part obscure. Here, we report our analysis of the targeting requirements and the sterol-binding properties of a small Arabidopsis oxysterol-binding protein, ORP3a. We have determined that ORP3a is a bona fide sterol-binding protein with sitosterol-binding properties. Live-cell imaging analyses revealed that ORP3a is localized at the ER, and that binding to this organelle depends on a direct interaction with PVA12, a member of the largely uncharacterized VAP33 family of plant proteins. Molecular modeling analyses and site-directed mutagenesis led to the identification of a novel protein domain that is responsible for the PVA12-ORP3a interaction. Disruption of the integrity of this domain caused redistribution of ORP3a to the Golgi apparatus, suggesting that ORP3a may cycle between the ER and the Golgi. These results represent new insights into the biology of sterol-binding proteins in plant cells, and elucidate a hitherto unknown relationship between members of oxysterol-binding protein and VAP33 families of plant proteins in the early plant secretory pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.