A layout of the offshore wind farm (OSWF) plays a vital role in its capital cost of installation. One of the major contributions in the installation cost is electrical collector system (ECS). ECS includes: submarine cables, number of wind turbines (WTs), offshore platforms etc. By considering the above mentioned problem having an optimized design of OSWF provides the better feasibility in terms of economic considerations. This paper explains the methodology for optimized designing of ECS. The proposed methodology is based on combined elitist ant colony optimization and multiple travelling salesman problem. The objective is to minimize the length of submarine cable connected between WTs and to minimize the wake loss in the wind farm in order to reduce the cost of cable and cable power loss. The methodology is applied on North Hoyle and Horns Rev OSWFs connected with 30 and 80 WTs respectively and the results are presented.
This paper proposes a hybrid controller which is a combination sliding mode control and PI control techniques for AC grid integrated offshore wind farm (OSWF) with voltage source converter -high voltage direct current system. The controller must be capable of controlling AC voltage, DC-link voltage, reactive power and effective power transfer. To examine the FRT capability, a symmetrical fault is applied at onshore AC grid side and compared the performances of the studied system based on the hybrid and PI controllers. The dynamic modelling and linearized system by state-space modelling for the studied system are explained in detail. The small signal stability analysis and controller stability are observed with the help of the eigenvalue analysis. The analysis of the studied system with a hybrid and conventional controllers are conducted in the software environment of the MATLAB/SIMULINK. The effect of parameter uncertainty on total system stability is examined with the help of eigenmatrix of the studied system.
In the presence of a diffusion thermal and coupled magnet field effect, this manuscript seeks continuous free convective motion by a viscous, incompressible fluid that conducts electrically past a sloping platform via a porous medium. The free flow speed may be compatible with the exponentially tiny disrupting law. Two-term harmonic and non-harmonic functions solve dimensional-less control equations analytically. Detailed graphs are used to determine the budgets for tempo, temperature, and concentration for various limit calculations. Also, the numbers of Nusselt and Sherwood are given and evaluated with the graphs. Its sketches illustrate that the velocity profiles get reduced by the increase of aligned magnetic field parameter (α) and inclined angle parameter (ξ). Temperature profile is accelerated by rising heat absorption, Dufour number and concentration distribution is decelerated by enhancing the chemical reaction and Schmidt number. Heat and mass transfer frequently occurs in chemically processed industries, distribution of temperature and moisture over agricultural fields, dispersion of fog and environment pollution and polymer production. Free convection flow of coupled heat and mass transfer occurs due to the temperature and concentration differences in the fluid as a result of driving forces. For example, in atmospheric flows, thermal convection resulting from heating of the earth by sunlight is affected differences in water vapour concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.