Recently, because of its importance in computer vision and surveillance systems, object tracking has progressed rapidly over the last two decades. Researches on such systems still face several theoretical and technical problems that badly impact not only the accuracy of position measurements but also the continuity of tracking. In this paper, a novel strategy for tracking multiple objects using static cameras is introduced, which can be used to grant a cheap, easy installation and robust tracking system. The proposed tracking strategy is based on scenes captured by a number of static video cameras. Each camera is attached to a workstation that analyzes its stream. All workstations are connected directly to the tracking server, which harmonizes the system, collects the data, and creates the output spatial-tempo database. Our contribution comes in two issues. The first is to present a new methodology for transforming the image coordinates of an object to its real coordinates. The second is to offer a flexible event-based object tracking strategy. The proposed tracking strategy has been tested over a CAD of soccer game environment. Preliminary experimental results show the robust performance of the proposed tracking strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.