The current study aimed to investigate the elimination of dyes from sewerage, using microfiltration membrane mechanism. Three dyes were applied, acid yellow-23, disperse blue -79 and acid orange -7. Experiments were performed with feed concentration (40 -120) ppm, feed flow rate (25 -65) l/h and time (0.25 -1.5) h. The membrane used ceramic membrane, constructed as a candle. It was discovered that water flow diminishes with an elevation in running time, feeding oil concentration and enhancing with elevation in the feed flow rate. In addition, it was determined that the elimination (rejection) rate of dyes enhances with elevation in the flow rate, and the elimination (rejection) rate diminishes as time passes. In cross flow microfiltration, the rejection concentration (concentrate) goes up as time passes, with high feed concentration and flow rate. It was also discovered that the modal infusion concentration declines with high feed concentration and working time. In addition, it was found that product rate goes down as time passes and with high feed concentration. Increasing feed concentration of dyes was associated with an increase in the concentration of rejecting solution. The highest elimination of disperse blue -79, Acid Yellow- 23 and acid orange -7, are 97%, 96.4% and 95.8%, respectively. The maximum recovery percentage of disperse blue - 79, acid yellow- 23 and acid orange -7are 57.7%, 58.5% and 59% respectively.
The aim of this study is to use the dry fibers of date palm as low-cost biosorbent for the removal of Cd(II), and Ni(II) ions from aqueous solution by fluidized bed column. The effects of many operating conditions such as superficial velocity, static bed height, and initial concentration on the removal efficiency of metal ions were investigated. FTIR analyses clarified that hydroxyl, amine and carboxyl groups could be very effective for bio-sorption of these heavy metal ions. SEM images showed that dry fibers of date palm have a high porosity and that metal ions can be trapped and sorbed into pores. The results show that a bed height of 6 cm, velocity of 1.1Umf and initial concentration for each heavy metal ions of 50 mg/L are most feasible and give high removal efficiency. The fluidized bed reactor was modeled using ideal plug flow and this model was solved numerically by utilizing the MATLAB software for fitting the measured breakthrough results. The breakthrough curves for metal ions gave the order of bio-sorption capacity as follow: Cd(II)]Ni(II).
The steel infrastructure is continuously under corrosive attack in most environmental and industrial conditions. There is an ongoing search for environmentally friendly, highly effective inhibitor compounds that can provide a protective action in situations ranging from the marine environment to oil and gas pipelines. The corrosion inhibition of transmission steel in 1M HCl cell in the presence of succinic acid at temperatures (20,30,40,50 and 60) °C at concentrations within the range (10−6- 10−4) M for two hours using the weight loss method (WLM). The results showed that the inhibition efficiency increases with increasing inhibitor concentration and increases with temperature up to 60°C. The activation significance of the corrosion rates was calculated as the activation energy Ea, the change of the activation entropy ΔH, and the change in the activation entropy ΔS. Also, results show that the inhibition efficiency was increased with the increase of inhibitor concentration and increased with the increase of temperature up to 60°C. Activation parameters of the corrosion process include activation energies (Ea), activation enthalpies (ΔH), and activation entropies (ΔS). The results also showed that the adsorption of the inhibitor is subjected to the Langmuir law, and the maximum efficiency reached approximately 97% at 60°C in the 10−4M inhibitor concentration.
Since their discovery in 1958, atrazine and other members of s-triazine family have been extensively applied in order to control grassy and broadleaf weeds in crops. Although, it was proved by many researchers that atrazine was slow and partially degradable material. These pesticides were widely used to enhance crop quality and yield. Atrazine degradation can be achieved by the effects of air, sun, water, microorganisms and temperature. Thermal degradation plays an important role in agrochemicals elimination; so a better understanding of the role of thermal degradation of atrazine is essential. Quantitative determination of pesticide residues was studied by calculating the amount of herbicide residues left after decomposition using a simple thermo analytical technique (TG, DSC). In this study, we found that all samples undergo the process of melting, evaporation, decomposition and oxidation at a temperature higher than the maximum registered climate temperature which made us conclude that 80–90%wt) of the pesticides stay in the environment without change under 100 °C on different parts of plants like fruits, leaves, and some penetrate into the ground to reach the roots or continue to the groundwater causes toxic problems to their consumers and environmental pollution. This result gave the motivation to find a more effective approach to reduce the harmful effect of these pollutants. In this regard, biological degradation of atrazine by using two legumes roots rhizobium bacteria was investigated. It is found that both rhizobium are able to treat atrazine at moderate temperature (30 °C). In comparison to chickpea rhizobia, bean rhizobia showed a higher performance with a removal efficiency of 43.21% and 57.42% at mild and high atrazine concentrations (5 mg/L and 10 mg/L) respectively. The results from this research offer an elegant way to remove the harmful effect of herbicides through degradation and to bring the safe use of herbicides a step closer to applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.