Purpose The highest number of accidents in proportion to the employment rate is found in construction industry among all industries in Pakistan. The purpose of this paper is to identify and prioritize the contributory factors of accident causation that can significantly reduce the rate of accident in the construction industry. Design/methodology/approach In total, 32 contributory factors of accident causation were identified through a triangulation strategy comprising eight face-to-face semi-structured interviews with the academic and industry experts coupled with a comprehensive literature review. Delphi survey was then conducted among the four respondent groups (clients, contractors, safety official and academia) to prioritize these factors. A consensus was achieved among the respondent groups after conducting two rounds of Delphi survey. Finally, the results were validated using the technique of inter-rater agreement (IRA) analysis. Findings All the shortlisted accident causation factors were graded as “important” to “extremely important”. Moreover, a “moderate” to “strong level” agreement was developed among the respondent groups. The three most significant factors were highlighted as “poor enforcement of safety rules and regulations by the Government agencies”, “insufficient allocation of safety budget and safety incentives by the client”, and “insufficient provision of safety training and resources by the contractor”. Practical implications The findings will help the key stakeholders to prioritize their energies towards achieving zero accident in the construction industry. Moreover, addition of academic experts as one of the respondent groups will enhance the linkages between the academia and the industry practitioners. Originality/value Besides highlighting the underlying causes of construction accidents in Pakistan, a detailed methodology is presented in this study for the analysis and validation of the Delphi survey data, which can be extrapolated in other regions and industries for elements prioritization. The findings of the study can also be generalized for other developing countries having similar work environment. The results validation through the use of IRA analysis is an addition to the field of construction safety research. The study also authenticates the applicability of IRA analysis to assess the agreement level among the respondents.
This study develops a safety climate (SC) measurement scale for building projects in Pakistan. In addition, it attempts to validate an existing SC scale in the cross-cultural environment of a developing country and highlights the implications of its cross-validation. The SC data collected from 40 under-construction multi-storey building projects were split into calibration and validation samples for conducting the exploratory and confirmatory factor analysis respectively. This resulted in a 24-item SC scale comprised of four factors: management commitment and employees' involvement in health and safety (MC&EI); safety enforcement and promotion (SE&P); applicability of safety rules and safe work practices (SR&WP); and safety consciousness and responsibility (SC&R). The factor structure achieved desirable goodness-of-fit, composite reliability and construct validity. The SE&P was discovered as one of the most influential SC factors, while SR&WP was detected as the most overlooked factor. A correlation was observed among the error variables of SE&P and SR&WP factors; thus necessitating the development of synergy in the safety enhancement efforts of these two factors.The study has reinforced the body of knowledge by highlighting the consequences of cross-validation in a developing country, and unveiling the deviations in the existing SC factor structure such as the discovery of SE&P as a novel SC factor. The study concludes that existing SC scales cannot be generalized across countries and regions without cultural adjustments. The designed SC scale and study's findings would help the key stakeholders to measure the SC and streamline their safety enhancement strategies on building projects in Pakistan.
This study attempts to validate a safety performance (SP) measurement model in the cross-cultural setting of a developing country. In addition, it highlights the variations in investigating the relationship between safety climate (SC) factors and SP indicators. The data were collected from forty under-construction multi-storey building projects in Pakistan. Based on the results of exploratory factor analysis, a SP measurement model was hypothesized. It was tested and validated by conducting confirmatory factor analysis on calibration and validation sub-samples respectively. The study confirmed the significant positive impact of SC on safety compliance and safety participation, and negative impact on number of self-reported accidents/injuries. However, number of near-misses could not be retained in the final SP model because it attained a lower standardized path coefficient value. Moreover, instead of safety participation, safety compliance established a stronger impact on SP. The study uncovered safety enforcement and promotion as a novel SC factor, whereas safety rules and work practices was identified as the most neglected factor. The study contributed to the body of knowledge by unveiling the deviations in existing dimensions of SC and SP. The refined model is expected to concisely measure the SP in the Pakistani construction industry, however, caution must be exercised while generalizing the study results to other developing countries.
The character of construction projects exposes front-line workers to dangers and accidents. Safety climate has been confirmed to be a predictor of safety performance in the construction industry. This study aims to explore the underlying mechanisms of the relationship between multilevel safety climate and safety performance. An integrated model was developed to study how particular safety climate factors of one level affect those of other levels, and then affect safety performance from the top down. A questionnaire survey was administered on six construction sites in Vietnam. A total of 1030 valid questionnaires were collected from this survey. Approximately half of the data were used to conduct exploratory factor analysis (EFA) and the remaining data were submitted to structural equation modeling (SEM). Top management commitment (TMC) and supervisors’ expectation (SE) were identified as factors to represent organizational safety climate (OSC) and supervisor safety climate (SSC), respectively, and coworkers’ caring and communication (CCC) and coworkers’ role models (CRM) were identified as factors to denote coworker safety climate (CSC). SEM results show that OSC factor is positively related to SSC factor and CSC factors significantly. SSC factor could partially mediate the relationship between OSC factor and CSC factors, as well as the relationship between OSC factor and safety performance. CSC factors partially mediate the relationship between OSC factor and safety performance, and the relationship between SSC factor and safety performance. The findings imply that a positive safety culture should be established both at the organizational level and the group level. Efforts from all top management, supervisors, and coworkers should be provided to improve safety performance in the construction industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.