Online recruitment services are now rapidly changing the landscape of hiring traditions on the job market. There are millions of registered users with resumes, and tens of thousands of job postings available on the Web. Learning good job-resume matching for recruitment services is important. Existing studies on job-resume matching generally focus on learning good representations of job descriptions and resume texts with comprehensive matching structures. We assume that it would bring benefits to learn the preference of both recruiters and job-seekers from previous interview histories and expect such preference is helpful to improve job-resume matching. To this end, in this paper, we propose a novel matching network with preference modeled. The key idea is to explore the latent preference given the history of all interviewed candidates for a job posting and the history of all job applications for a particular talent. To be more specific, we propose a profiling memory module to learn the latent preference representation by interacting with both the job and resume sides. We then incorporate the preference into the matching framework as an end-to-end learnable neural network. Based on the real-world data from an online recruitment platform namely "Boss Zhipin", the experimental results show that the proposed model could improve the jobresume matching performance against a series of state-ofthe-art methods. In this way, we demonstrate that recruiters and talents indeed have preference and such preference can improve job-resume matching on the job market. * indicates equal contribution.
Previous research on dialogue systems generally focuses on the conversation between two participants, yet multi-party conversations which involve more than two participants within one session bring up a more complicated but realistic scenario. In real multiparty conversations, we can observe who is speaking, but the addressee information is not always explicit. In this paper, we aim to tackle the challenge of identifying all the missing addressees in a conversation session. To this end, we introduce a novel who-to-whom (W2W) model which models users and utterances in the session jointly in an interactive way. We conduct experiments on the benchmark Ubuntu Multi-Party Conversation Corpus and the experimental results demonstrate that our model outperforms baselines with consistent improvements.
Understanding neural models is a major topic of interest in the deep learning community. In this paper, we propose to interpret a general neural model comparatively. Specifically, we study the sequence-to-sequence (Seq2Seq) model in the contexts of two mainstream NLP tasks-machine translation and dialogue response generation-as they both use the seq2seq model. We investigate how the two tasks are different and how their task difference results in major differences in the behaviors of the resulting translation and dialogue generation systems. This study allows us to make several interesting observations and gain valuable insights, which can be used to help develop better translation and dialogue generation models. To our knowledge, no such comparative study has been done so far.
This paper studies learning from positive and unlabeled examples, known as PU learning. It proposes a novel PU learning method called Predictive Adversarial Networks (PAN) based on GAN (Generative Adversarial Networks). GAN learns a generator to generate data (e.g., images) to fool a discriminator which tries to determine whether the generated data belong to a (positive) training class. PU learning can be casted as trying to identify (not generate) likely positive instances from the unlabeled set to fool a discriminator that determines whether the identified likely positive instances from the unlabeled set are indeed positive. However, directly applying GAN is problematic because GAN focuses on only the positive data. The resulting PU learning method will have high precision but low recall. We propose a new objective function based on KL-divergence. Evaluation using both image and text data shows that PAN outperforms state-of-the-art PU learning methods and also a direct adaptation of GAN for PU learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.