Diffuse Intrinsic Pontine Glioma (DIPG) is a fatal childhood cancer. We performed a chemical screen in patient-derived DIPG cultures along with RNAseq analyses and integrated computational modeling to identify potentially effective therapeutic strategies. The multi-histone deacetylase inhibitor panobinostat demonstrated efficacy in vitro and in DIPG orthotopic xenograft models. Combination testing of panobinostat with histone demethylase inhibitor GSKJ4 revealed synergy. Together, these data suggest a promising therapeutic strategy for DIPG.
Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area.
SUMMARY Embryonal rhabdomyosarcoma (eRMS) shows the most myodifferentiation amongst sarcomas, yet the precise cell of origin remains undefined. Using Ptch1, p53 and/or Rb1 conditional mouse models and controlling prenatal or postnatal myogenic cell of origin, we demonstrate that eRMS and undifferentiated pleomorphic sarcoma (UPS) lie in a continuum, with satellite cells predisposed to giving rise to UPS. Conversely, p53 loss in maturing myoblasts gives rise to eRMS, which have the highest myodifferentiation potential. Irrespective of origin, Rb1 loss modifies tumor phenotype to mimic UPS. In human sarcomas that lack pathognomic chromosomal translocations, p53 loss of function is prevalent whereas Shh or Rb1 alterations likely act primarily as modifiers. Thus, sarcoma phenotype is strongly influenced by cell of origin and mutational profile.
This paper treats intervention via external control variables in context-sensitive PBNs by extending the results for instantaneously random PBNs in several directions. First, and most importantly, whereas an instantaneously random PBN yields a Markov chain whose state space is composed of gene vectors, each state of the Markov chain corresponding to a context-sensitive PBN is composed of a pair, the current gene vector occupied by the network and the current constituent Boolean network. Second, the analysis is applied to PBNs with perturbation, meaning that random gene perturbation is permitted at each instant with some probability. Third, the (mathematical) influence of genes within the network is used to choose the particular gene with which to intervene. Lastly, PBNs are designed from data using a recently proposed inference procedure that takes steady-state considerations into account. The results are applied to a context-sensitive PBN derived from gene-expression data collected in a study of metastatic melanoma, the intent being to devise a control strategy that reduces the WNT5A gene's action in affecting biological regulation, since the available data suggest that disruption of this influence could reduce the chance of a melanoma metastasizing.
External control of a genetic regulatory network is used for the purpose of avoiding undesirable states, such as those associated with disease. Heretofore, intervention has focused on finite-horizon control, i.e., control over a small number of stages. This paper considers the design of optimal infinitehorizon control for context-sensitive probabilistic Boolean networks (PBNs). It can also be applied to instantaneously random PBNs. The stationary policy obtained is independent of time and dependent on the current state. We concentrate on discounted problems with bounded cost per stage and on average-costper-stage problems. These formulations are used to generate stationary policies for a PBN constructed from melanoma geneexpression data. The results show that the stationary policies obtained by the two different formulations are capable of shifting the probability mass of the stationary distribution from undesirable states to desirable ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.