Terminal deoxynucleotidyl transferase, which requires a single-stranded DNA primer under the usual assay conditions, can be made to accept double-stranded DNA as primer for the addition of either rNMP or dNMP, if Mg+2 ion is replaced by Co+2 ion. The priming efficiency in the presence of Co+2 ion with respect to initial rate tested with 2 single-stranded primer, is 5-6 fold higher than that observed with Mg+2 ion. In the presence of Co+2 ion, the primer specificity is altered so that all forms of duplex DNA molecules can be labeled at their unique 3'-ends regardless of whether such ends are staggered or even. Thus, using ribonucleotide incorporation, we have for the first time employed this reaction for sequence analysis of duplex DNA fragments generated by restriction endonuclease cleavages. Furthermore, by using Co+2 ion, it is possible to add a long homopolymer tract of deoxyribonucleotides to the 3'-terminus of double-stranded DNA. Therefore, without prior treatment with lambda exonuclease to expose the 3' terminus as single-stranded primer, this reaction now permits insertion of homopolymer tails at the 3'-ends of all types of DNA molecules for the purpose of in vitro construction of recombinant DNA.
Terminal deoxynucleotidyl transferase, which requires a single-stranded DNA primer under the usual assay conditions, can be made to accept double-stranded DNA as primer for the addition of either rNMP or dNMP, if Mg+2 ion is replaced by Co+2 ion. The priming efficiency in the presence of (C leads to) CO+2 ion with respect to initial rate tested with 2 single-stranded primer, is 5-6 fols higher than that observed with Mg+2 ion. In the presence of Co+2 ion, the primer specificity is altered so that all forms of duplex DNA molecules can be labeled at their unique 3' -ends regardless of whether such ends are staggered or even. Thus, using ribonucleotide incorporation, we have for the first time employed this reaction for sequence analysis of duplex DNA fragments generated by restriction endonuclease cleavages. Furthermore, by using Co+2 ion, it is possible to add a long homopolymer tract of deoxyribonucleotides to the 3'-terminus of double-stranded DNA. Therefore, without prior treatment with lambda exonuclease to expose the 3' terminus as single-stranded primer, this reaction now permits insertion of homopolymer tails at the 3'-ends of all types of DNA molecules for the purpose of in vitro construction of recombinant DNA.
We have determined the recognition sequence of the restriction endonuclease KpnI, previously isolated from Klebsiella pneumoniae. The enzyme cleaves the twofold rotationally symmetric sequence (see book for formula) at the positions indicated by the arrows, producing 3' protruding cohesive ends, four nucleotides in length. The specific cleavage site was unambiguously deduced using both 3' and 5' end analyses of KpnI generated restriction fragments of simian-virus 40 (SV40) DNA (1 site), adenovirus-2 (Ad-2) DNA (8 sites), and a plasmid (pCRI) DNA (2 sites).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.