Rho Kinase (ROCKII) has been recently implicated in several cardiovascular diseases prompting several attempts to discover and optimize new ROCKII inhibitors. Towards this end we explored the pharmacophoric space of 138 ROCKII inhibitors to identify high quality pharmacophores. The pharmacophoric models were subsequently allowed to compete within quantitative structure-activity relationship (QSAR) context. Genetic algorithm and multiple linear regression analysis were employed to select an optimal combination of pharmacophoric models and 2D physicochemical descriptors capable of accessing self-consistent QSAR of optimal predictive potential (r (77) = 0.84, F = 18.18, r (LOO) (2) = 0.639, r (PRESS) (2) against 19 external test inhibitors = 0.494). Two orthogonal pharmacophores emerged in the QSAR equation suggesting the existence of at least two binding modes accessible to ligands within ROCKII binding pocket. Receiver operating characteristic (ROC) curve analyses established the validity of QSAR-selected pharmacophores. Moreover, the successful pharmacophores models were found to be comparable with crystallographically resolved ROCKII binding pocket. We employed the pharmacophoric models and associated QSAR equation to screen the national cancer institute (NCI) list of compounds Eight submicromolar ROCKII inhibitors were identified. The most potent gave IC(50) values of 0.7 and 1.0 μM.
Bringing to a halt the cell cycle in mitosis and interfering with its normal progression is one of the most successful anti-cancer strategies used nowadays. Classically, several kinds of anti-cancer drugs like taxanes and vinca alkaloids directly inhibit microtubules during cell division. These drugs exhibit serious side effects, most importantly, severe peripheral neuropathies. Alternatively, KSP inhibitors are grasping a lot of research attention as less toxic mitotic inhibitors. In this review, we track the medicinal chemistry developmental stages of KSP inhibitors. Moreover, we address the challenges that are faced during the development of KSP inhibitor therapy for cancer and future insights for the latest advances in research that are directed to find active KSP inhibitor drugs.
Targeting Proviral integration-site of murine Moloney leukemia virus 1 kinase, hereafter called Pim-1 kinase, is a promising strategy for treating different kinds of human cancer. Headed for this a total list of 328 formerly reported Pim-1 kinase inhibitors has been explored and divided based on the pharmacophoric features of the most active molecules into 10 subsets projected to represent potential active binding manners accessible to ligands within the binding pocket of Pim-1 kinase. Discovery Studio 4.1 (DS 4.1) was employed to detect potential pharmacophoric active binding manners anticipated by Pim-1 Kinase inhibitors. The pharmacophoric models were then allowed to compete within Quantitative Structure Activity Relationship (QSAR) framework with other 2D descriptors. Accordingly Genetic algorithm and multiple linear regression investigation were engaged to find the finest QSAR equation that has the best predictive power r262(2) = 0.70, F = 119.14, rLOO(2) = 0.693, rPRESS(2) against 66 external test inhibitors = 0.71 q(2) = 0.55. Three different pharmacophores appeared in the successful QSAR equation this represents three different binding modes for inhibitors within the Pim-1 kinase binding pocket. Pharmacophoric models were later used to screen compounds within the National Cancer Institute database. Several low micromolar Pim-1 Kinase inhibitors were captured. The most potent hits show IC50 values of 0.77 and 1.03 µM. Also, upon analyzing the successful QSAR Equation we found that some polycyclic aromatic electron-rich structures namely 6-Chloro-2-methoxy-acridine can be considered as putative hits for Pim-1 kinase inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.