Bacterial ghosts (BGS) are empty non-living envelopes produced either genetically or chemically. This study investigated a novel chemical protocol for the production of Neisseria meningitidis ghost vaccine using tween 80 followed by a pH reduction with lactic acid. For our vaccine candidate, both safety and immunogenicity aspects were evaluated. The ghost pellets showed no sign of growth upon cultivation. BGS were visualized by scanning electron microscopy, illustrating the formation of trans-membrane tunnels with maintained cell morphology. Gel electrophoresis showed no distinctive bands of the cytoplasmic proteins and DNA, assuring the formation of ghost cells. In animal model, humoral immune response significantly increased when compared to commercial vaccine (p < 0.01). Moreover, serum bactericidal assay (SBA) recorded 94.67% inhibition compared to 64% only for the commercial vaccine after three vaccination doses. In conclusion, this is the first N. meningitidis ghost vaccine candidate, proven to be effective, economic, and with significant humoral response and efficient SBA values; however, clinical studies should be performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.