The effect of Cd(2+) and Ni(2+) on the rate of photosynthesis and activities of key enzymes of the photosynthetic carbon reduction cycle was examined in leaves from pigeonpea (Cajanus cajan L., cv. UPAS-120) grown in nitrogen free sand culture. Two different concentrations of Cd(2+) and Ni(2+) were applied through the rooting medium at two growth stages. The application of Cd(2+) and Ni(2+) (0.5 and 1.0 mM) at an early vegetative stage (30 days after sowing) resulted in about 50% and 32% reduction in net photosynthesis, respectively. However, enzyme activities were decreased to different levels (2-61%) depending upon the enzyme and the concentration of the metal ion.These concentrations (0.5 and 1.0 mM of Cd(2+) and Ni(2+)) had no effect when applied at a later vegetative stage i.e. 70 days after sowing. However, when the concentration of Cd(2+) was increased to 10 mM, there was about an 86% reduction in the rate of photosynthesis but the enzyme activities were reduced by only about 40%. Although Ni(2+) reduced the photosynthetic rate by 65%, it had little effect on enzyme activities. The reduction in photosynthesis seems to occur indirectly through a decrease in chlorophyll content and stomatal conductance but not due to decreased enzyme activities. Oxygen evolution by leaf discs was inhibited by Cd(2+) and Ni(2+) in parallel with a reduction in photosynthesis. These data confirm the earlier reported effects of Cd(2+) and Ni(2+) on O2 evolution in isolated chloroplasts.
Background:Agricultural use of antimicrobials in subtherapeutic concentrations is increasing in response to the rising demand for food animal products worldwide. In India, the use of antimicrobials in food animal production is unregulated. Research suggests that many clinically important antimicrobials are used indiscriminately. This is the largest study to date in India that surveys poultry production to test for antimicrobial resistance and the occurrence of extended-spectrum β-lactamases (ESBLs) modulated by farming and managerial practices.Objectives:Our goal was to survey poultry production for resistance to eleven clinically relevant antimicrobials and phenotypic occurrence of ESBLs as modulated by farming and managerial practices.Methods:Eighteen poultry farms from Punjab were surveyed, and 1,556 Escherichia coli isolates from 530 birds were tested for susceptibility to 11 antimicrobials using the disk diffusion method and validated using VITEK 2 (bioMérieux, Marcy-L’Étoile, France). Samples from 510 of these birds were phenotypically tested for ESBL production using the combination disk method and confirmed using VITEK 2. Generalized linear mixed models were used to infer differences in resistance profiles associated with different farming practices and facility types.Results:Resistance profiles were significantly different between broiler and layer farms. Broiler farms were 2.2 [ampicillin (AMP), p=0.017] to 23 [nalidixic acid (NX), p<0.001] times more likely to harbor resistant E. coli strains than layer farms. Adjusting for farm type (broiler vs. layer), the odds of resistance (although not statistically significant) to all antimicrobials except nitrofurantoin (NIT) were higher in independent facilities (IUs) as compared to contracted facilities (CFs). Increased prevalence of multidrug resistance (MDR; 94% compared to 60% in layers), including prevalence of ESBL-producing strains (87% compared to 42% in layers), was observed in broiler farms.Conclusions:Our findings suggest that unregulated use of clinically relevant antimicrobials in Indian broiler and layer farms may contribute to the emergence of resistance and support the need to curb the nontherapeutic use of medically important antimicrobials in food animal production. https://doi.org/10.1289/EHP292
Tannase producing fungal strains were isolated from different locations including garbages, forests and orchards, etc. The strain giving maximum enzyme yield was identified to be Aspergillus ruber. Enzyme production was studied under solid state fermentation using different tannin rich substrates like ber leaves (Zyzyphus mauritiana), jamun leaves (Syzygium cumini), amla leaves (Phyllanthus emblica) and jawar leaves (Sorghum vulgaris). Jamun leaves were found to be the best substrate for enzyme production under solid-state fermentation (SSF). In SSF with jamun leaves, the maximum production of tannase was found to be at 30 degrees C after 96 h of incubation. Tap water was found to be the best moistening agent, with pH 5.5 in ratio of 1:2 (w/v) with substrate. Addition of carbon and nitrogen sources to the medium did not increase tannase production. Under optimum conditions as standardized here, the enzyme production was 69 U/g dry substrate. This is the first report on production of tannase by A. ruber, giving higher yield under SSF with agro-waste as the substrate.
Activities of key enzymes of Calvin cycle and C4 metabolism, rate of (14)CO2 fixation in light and dark and the initial products of photosynthetic (14)CO2 fixation were determined in flag leaf and different ear parts of wheat viz. pericarp, awn and glumes. Compared to the activities of RuBP carboxylase and other Calvin cycle enzymes viz. NADP-glyceraldehyde-3-phosphate dehydrogenase, NAD-glyceraldehyde-3-phosphate dehydrogenase and ribulose-5-phosphate kinase, the levels of PEP carboxylase and other enzymes of C4 metabolism viz. NADP-malate dehydrogenase, NAD-malate dehydrogenase, NADP-malic enzyme, NAD-malic enzyme, glutamate oxaloacetate transaminase genase, NADP-malic enzyme, NAD-malic enzyme, glutamate oxaloacetate transaminase and glutamate pyruvate transaminase, were generally greater in ear parts than in the flag leaf. In contrast to CO2 fixation in light, the various ear parts incorporated CO2 in darkness at much higher rates than flag leaf. In short term assimilation of (14)CO2 by illuminated ear parts, most of the (14)C was in malate with less in 3-phosphoglyceric acid, whereas flag leaves incorporated most into 3-phosphoglyceric acid. It seems likely that ear parts have the capability of assimilating CO2 by the C4 pathway of photosynthesis and utilise PEP carboxylase for recapturing the respired CO2.
The indiscriminate usage of antimicrobials in the animal health sector contributes immensely to antimicrobial resistance (AMR). The present study aims to assess the antimicrobial usage pattern and risk factors for AMR in animal husbandry sector of India. A cross-sectional survey about Knowledge, Attitude, and Practices (KAP) among veterinarians was carried out using a questionnaire comprising of 52 parameters associated with antibiotic use and the emergence of AMR in dairy herds. Respondents’ KAP scores were estimated to rank their level of knowledge, attitude, and practice. Furthermore, risk factors associated with treatment failure were analyzed by univariable and multivariable analyses. Out of a total of 466 respondents, the majority had average knowledge (69.5%), neutral attitude (93.2%), and moderate practice (51.3%) scores toward judicious antibiotic usage. Veterinarians reported mastitis (88.0%), reproductive disorders (76.6%), and hemoprotozoan infections (49.6%) as the top three disease conditions that require antibiotic usage. Most of the veterinarians (90.6%) resorted to their “own experience” as the main criteria for antibiotic choice. The use of the highest priority critically important antimicrobials (HPCIA) listed by the World Health Organization (WHO) in animals, particularly quinolones (76.8%) and third-generation cephalosporins (47.8%), has been reported. On multivariable regression analysis of the risk factors, the lack of cooperation of the dairy farmers in the completion of a prescribed antibiotic course by the veterinarian and the demand for antibiotic use even in conditions not requiring antibiotic use were found to be significantly associated with the outcome variable “treatment failure” having respective odds of 1.8 (95%CI: 1.1–3.0) and 3.6 (95%CI: 2.3–5.8) (p < 0.05). The average KAP score of veterinarians, poor farm management practices, lack of awareness among farmers on prudent antibiotic use, and lack of antibiotic stewardship are the significant factors that need attention to combat the rising AMR in veterinary sector in India.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.