The effect of Cd(2+) and Ni(2+) on the rate of photosynthesis and activities of key enzymes of the photosynthetic carbon reduction cycle was examined in leaves from pigeonpea (Cajanus cajan L., cv. UPAS-120) grown in nitrogen free sand culture. Two different concentrations of Cd(2+) and Ni(2+) were applied through the rooting medium at two growth stages. The application of Cd(2+) and Ni(2+) (0.5 and 1.0 mM) at an early vegetative stage (30 days after sowing) resulted in about 50% and 32% reduction in net photosynthesis, respectively. However, enzyme activities were decreased to different levels (2-61%) depending upon the enzyme and the concentration of the metal ion.These concentrations (0.5 and 1.0 mM of Cd(2+) and Ni(2+)) had no effect when applied at a later vegetative stage i.e. 70 days after sowing. However, when the concentration of Cd(2+) was increased to 10 mM, there was about an 86% reduction in the rate of photosynthesis but the enzyme activities were reduced by only about 40%. Although Ni(2+) reduced the photosynthetic rate by 65%, it had little effect on enzyme activities. The reduction in photosynthesis seems to occur indirectly through a decrease in chlorophyll content and stomatal conductance but not due to decreased enzyme activities. Oxygen evolution by leaf discs was inhibited by Cd(2+) and Ni(2+) in parallel with a reduction in photosynthesis. These data confirm the earlier reported effects of Cd(2+) and Ni(2+) on O2 evolution in isolated chloroplasts.
The main objective of the present research work was to study the effect of Cr toxicity and its amelioration by glycine betaine (GB) in sorghum (HJ 541 and SSG 59-3). Chromium (Cr VI), 2 and 4 ppm led to a significant reduction in plant height, root length, chlorophyll content, antioxidant enzymes viz. catalase, peroxidase, ascorbate peroxidase, glutathione reductase, polyphenol oxidase, and superoxide dismutase; and metabolites viz. ascorbate, proline, and glutathione. The results of the present study supported the findings that the application of GB can minimize or reduce the toxic effects caused by Cr VI which reaches the plants via soil, water, and air pollution. It is concluded that GB at both 50, as well as 100 mM concentrations, successfully ameliorated Cr VI (up to 4 ppm) toxicity and its application may be recommended for crops affected by Cr VI toxicity to get better growth and yield.
Twenty one genotypes and two check varieties viz. CS-88 and V-240 of cowpea [Vigna unguiculata (L.) Walp. ] were screened for total proteins. The total protein content ranged from 22.4 (HC-3) to 27.9 % (HC-98-64) in 21 genotypes whereas in check varieties it was 25.6 (V-240) and 26.0 % (CS-88). Seven genotypes viz. HC-6, HC-5, CP-21, LST-II-C-12, CP-16, COVU-702 and HC-98-64 having high protein content (26.7 to 27.9 %) were selected for further characterization of their seed storage proteins. Globulins were the major protein fraction ranging from 55.6 (LST-II-C-12) to 58.8 % (CP-16 and HC-6) of total protein. Glutelins was the second major fraction ranging from 14.4 to 15.6 % followed by albumins (8.2 to 11.9 %) and prolamins (2.3 to 5.0 %). Content of free amino acids also showed variations amongst genotypes with COVU-702 having maximum and LST-II-C-12 having minimum content. Essential amino acid analysis revealed that S-amino acids (cysteine and methionine) were the first limiting amino acids followed by tryptophan. From the results presented here it could be suggested that two genotypes viz. LST-II-C-12 and HC-5 be used in breeding programmes aimed at developing high protein moth bean varieties with good quality.
Activities of key enzymes of the Calvin cycle and C. metabolism, rates of CO2 frixation, and the initial products of photosynthetic '4CO2 fLxation were determined in the podwall seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv 'Toria.' Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, eg. NADP-glyceraldehyde-3-phosphatedehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C4 metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate rns se, were generally much higher in seed than in podwall and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of '4CO2 assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO2 during light. However, respiratory losses were very high during the dark period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.