Magnetic Particle Imaging (MPI) is a promising new tomographic modality for fast as well as three-dimensional visualization of magnetic material. For anatomical or structural information an additional imaging modality such as computed tomography (CT) is required. In this paper, the first hybrid MPI-CT scanner for multimodal imaging providing simultaneous data acquisition is presented.
Determining fiber length distribution in fiber reinforced polymer components is a crucial step in quality assurance, since fiber length has a strong influence on overall strength, stiffness, and stability of the material. The approximate fiber length distribution is usually determined early in the development process, as conventional methods require a destruction of the sample component. In this paper, a novel, automatic, and nondestructive approach for the determination of fiber length distribution in fiber reinforced polymers is presented. For this purpose, high-resolution computed tomography is used as imaging method together with subsequent image analysis for evaluation. The image analysis consists of an iterative process where single fibers are detected automatically in each iteration step after having applied image enhancement algorithms. Subsequently, a model-based approach is used together with a priori information in order to guide a fiber tracing and segmentation process. Thereby, the length of the segmented fibers can be calculated and a length distribution can be deduced. The performance and the robustness of the segmentation method is demonstrated by applying it to artificially generated test data and selected real components.
Talbot(-Lau) interferometric x-ray and neutron dark-field imaging has, over the past decade, gained substantial interest for its ability to provide insights into a sample’s microstructure below the imaging resolution by means of ultra small angle scattering effects. Quantitative interpretations of such images depend on models of the signal origination process that relate the observable image contrast to underlying physical processes. A review of such models is given here and their relation to the wave optical derivations by Yashiro et al and Lynch et al as well as to small angle scattering is discussed. Fresnel scaling is introduced to explain the characteristic distance dependence observed in cone beam geometries. Moreover, a model describing the anisotropic signals of fibrous objects is derived. The Yashiro-Lynch model is experimentally verified both in radiographic and tomographic imaging in a monochromatic synchrotron setting, considering both the effects of material and positional dependence of the resulting dark-field contrast. The effect of varying sample–detector distance on the dark-field signal is shown to be non-negligible for tomographic imaging, yet can be largely compensated for by symmetric acquisition trajectories. The derived orientation dependence of the dark-field contrast of fibrous materials both with respect to variations in autocorrelation width and scattering cross section is experimentally validated using carbon fiber reinforced rods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.