BackgroundRoots are vital to plants for soil exploration and uptake of water and nutrients. Root performance is critical for growth and yield of plants, in particular when resources are limited. Since roots develop in strong interaction with the soil matrix, tools are required that can visualize and quantify root growth in opaque soil at best in 3D. Two modalities that are suited for such investigations are X-ray Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Due to the different physical principles they are based on, these modalities have their specific potentials and challenges for root phenotyping. We compared the two methods by imaging the same root systems grown in 3 different pot sizes with inner diameters of 34 mm, 56 mm or 81 mm.ResultsBoth methods successfully visualized roots of two weeks old bean plants in all three pot sizes. Similar root images and almost the same root length were obtained for roots grown in the small pot, while more root details showed up in the CT images compared to MRI. For the medium sized pot, MRI showed more roots and higher root lengths whereas at some spots thin roots were only found by CT and the high water content apparently affected CT more than MRI. For the large pot, MRI detected much more roots including some laterals than CT.ConclusionsBoth techniques performed equally well for pots with small diameters which are best suited to monitor root development of seedlings. To investigate specific root details or finely graduated root diameters of thin roots, CT was advantageous as it provided the higher spatial resolution. For larger pot diameters, MRI delivered higher fractions of the root systems than CT, most likely because of the strong root-to-soil contrast achievable by MRI. Since complementary information can be gathered with CT and MRI, a combination of the two modalities could open a whole range of additional possibilities like analysis of root system traits in different soil structures or under varying soil moisture.Electronic supplementary materialThe online version of this article (doi:10.1186/s13007-015-0060-z) contains supplementary material, which is available to authorized users.
Background. Computed X-ray tomography (CTX) is a high-end nondestructive approach for the visual assessment of root architecture in soil. Nevertheless, in order to evaluate high-resolution CTX data of root architectures, manual segmentation of the depicted root systems from large-scale volume data is currently necessary, which is both time consuming and error prone. The duration of such a segmentation is of importance, especially for time-resolved growth analysis, where several instances of a plant need to be segmented and evaluated. Specifically, in our application, the contrast between soil and root data varies due to different growth stages and watering situations at the time of scanning. Additionally, the root system itself is expanding in length and in the diameter of individual roots. Objective. For semiautomated and robust root system segmentation from CTX data, we propose the RootForce approach, which is an extension of Frangi’s “multi-scale vesselness” method and integrates a 3D local variance. It allows a precise delineation of roots with diameters down to several μm in pots with varying diameters. Additionally, RootForce is not limited to the segmentation of small below-ground organs, but is also able to handle storage roots with a diameter larger than 40 voxels. Results. Using CTX volume data of full-grown bean plants as well as time-resolved (3D+time) growth studies of cassava plants, RootForce produces similar (and much faster) results compared to manual segmentation of the regarded root architectures. Furthermore, RootForce enables the user to obtain traits not possible to be calculated before, such as total root volume (Vroot), total root length (Lroot), root volume over depth, root growth angles (θmin, θmean, and θmax), root surrounding soil density Dsoil, or form fraction F. Discussion. The proposed RootForce tool can provide a higher efficiency for the semiautomatic high-throughput assessment of the root architectures of different types of plants from large-scale CTX. Furthermore, for all datasets within a growth experiment, only a single set of parameters is needed. Thus, the proposed tool can be used for a wide range of growth experiments in the field of plant phenotyping.
Silicon carbide single crystals have become widely used as substrates for power electronic devices like diodes and electronic switches. Today, 4inch and 6inch wafer diameters are commercially available which are processed from vapor grown crystals. The state of the art physical vapor transport method may be called mature. Nevertheless, low defect density and uniform doping are still topics which can be further improved by current research and development of more sophisticated processes and process control. The aim of the paper is to review the physical vapor transport growth method as applied today. Special emphasis will be put on currently less advanced in situ growth monitoring tools based on 2D and 3D X-ray imaging that could be a tool for production monitoring. These techniques allow a precise determination of the crystal and source material evolution. Another topic will be the processing of highly conductive p-type 4H-SiC which is of particular interest for power electronic switches
The intensity of a monochromatic X-ray beam decreases exponentially with the distance it has traveled inside a material; this behavior is commonly referred to as Beer-Lambert's law. Knowledge of the materialspecific attenuation coefficient µ allows to determine the thickness of a sample from the intensity decrease the beam has experienced. However, classical X-ray tubes emit a polychromatic bremsstrahlung-spectrum. And the attenuation coefficients of all materials depend on the photon energy: photons with high energy are attenuated less than photons with low energy. In consequence, the X-ray spectrum changes while traveling through the medium; due to the relative increase of high energy photons this effect is called beam hardening. For this varying spectrum, the Beer-Lambert law only remains valid if µ is replaced by an effective attenuation coefficient µ eff which depends not only on the material, but also its thickness x and the details of the X-ray setup used. We present here a way to deduce µ eff (x) from a small number of auxiliary measurements using a phenomenological model. This model can then be used to determine an unknown material thickness or in the case of a granular media its volume fraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.