We report on the first demonstration of fluorescence detection using single-photon avalanche photodiodes (SPADs) monolithically integrated with a microfabricated surface ion trap. The SPADs are positioned below the trapping positions of the ions, and designed to detect 370 nm photons emitted from single 174 Yb + and 171 Yb + ions. We achieve an ion/no-ion detection fidelity for 174 Yb + of 0.99 with an average detection window of 7.7(1) ms. We report a dark count rate as low as 1.2 kHz at room temperature operation. The fidelity is limited by laser scatter, dark counts, and heating that prevents holding the ion directly above the SPAD. We measure count rates from each of the contributing sources and fluorescence as a function of ion position. Based on the active detector area and using the ion as a calibrated light source we estimate a SPAD quantum efficiency of 24±1%.
HgCdTe infrared photovoltaic detectors were fabricated on silicon substrates for the first time by using intermediate CdTe and GaAs epitaxial layers. No cracking or degradation was observed after thermal cycling these devices (cutoff wavelength of 5.5 μm and R0A as high as 200 Ω cm2 at 80 K). Secondary ion mass spectrometry and Auger data substantiate that a CdTe buffer layer can prevent Ga diffusion from the intermediate GaAs epitaxial layer from inadvertently converting the p-HgCdTe to n-type at growth temperatures as high as 500 °C.
The Multispectral Thermal Imager (MTI) is a research and development project sponsored by the Department of Energy and executed by Sandia and Los Alamos National Laboratories and the Savannah River Technology Center. Other participants include the U. S. Air Force, universities, and many industrial partners. The MTI mission is to demonstrate the efficacy of highly accurate multispectral imaging for passive characterization of industrial facilities and related environmental impacts from space. MTI provides simultaneous data for atmospheric characterization at high spatial resolution. Additionally, MTI has applications to environmental monitoring and other civilian applications. The mission is based in endto-end modeling of targets, signatures, atmospheric effects, the space sensor, and analysis techniques to form a balanced, self-consistent mission. The MTI satellite nears completion, and is scheduled for launch in late 1999. This paper describes the MTI mission, development of desired system attributes, some trade studies, schedule, and overall plans for data acquisition and analysis. This effort drives the sophisticated payload and advanced calibration systems, which are the overall subject of the first session at this conference, as well as the data processing and some of the analysis tools that will be described in the second segment.
MTI is a comprehensive research and development project that includes up-front modeling and analysis, satellite system design, fabrication, assembly and testing, on-orbit operations, and experimentation and data analysis. The satellite is designed to collect radiometrically calibrated, medium resolution imagery in 15 spectral bands ranging from 0.45 to 10.70 pm. The payload portion of the satellite includes the imaging system components, associated electronics boxes, and payload support structure. The imaging system includes a three-mirror anastigmatic off-axis telescope, a single cryogenically cooled focal plane assembly, a mechanical cooler, and an onboard calibration system. Payload electronic subsystems include image digitizers, real-time image compressors, a solid state recorder, calibration source drivers, and cooler temperature and vibration controllers.The payload support structure mechanically integrates all payload components and provides a simple four point interface to the spacecraft bus. All payload components have been fabricated and tested, and integrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.