When an intense laser pulse is focused into a gas, the light-atom interaction that occurs as atoms are ionized results in an extremely nonlinear optical process--the generation of high harmonics of the driving laser frequency. Harmonics that extend up to orders of about 300 have been reported, some corresponding to photon energies in excess of 500 eV. Because this technique is simple to implement and generates coherent, laser-like, soft X-ray beams, it is currently being developed for applications in science and technology; these include probing the dynamics in chemical and materials systems and imaging. Here we report that by carefully tailoring the shapes of intense light pulses, we can control the interaction of light with an atom during ionization, improving the efficiency of X-ray generation by an order of magnitude. We demonstrate that it is possible to tune the spectral characteristics of the emitted radiation, and to steer the interaction between different orders of nonlinear processes.
We present spatial coherence measurements of extreme ultraviolet (EUV) light generated through the process of high-harmonic up-conversion of a femtosecond laser. With a phase-matched hollow-fiber geometry, the generated beam was found to exhibit essentially full spatial coherence. The coherence of this laser-like EUV source was shown by recording Gabor holograms of small objects. This work demonstrates the capability to perform EUV holography with a tabletop experimental setup. Such an EUV source, with low divergence and high spatial coherence, can be used for experiments involving high-precision metrology, inspection of optical components for EUV lithography, and microscopy and holography with nanometer resolution. Furthermore, the short time duration of the EUV radiation (a few femtoseconds) will enable EUV microscopy and holography to be performed with ultrahigh time resolution.
We demonstrate experimentally how the time-dependent phase modulation induced by molecular rotational wave packets can manipulate the phase and spectral content of ultrashort light pulses. Using impulsively excited rotational wave packets in CO2, we increase the bandwidth of a probe pulse by a factor of 9, while inducing a negative chirp. This chirp is removed by propagation through a fused silica window, without the use of a pulse compressor. This is a very general technique for optical phase modulation that can be applied over a broad spectral region from the IR to the UV.
Line imaging of fluorescent and absorptive objects with a single-pixel imaging technique that acquires one-dimensional cross-sections through a sample by imposing a spatially-varying amplitude modulation on the probing beam is demonstrated. The fluorophore concentration or absorber distribution of the sample is directly mapped to modulation frequency components of the spatially-integrated temporal signal. Time-domain signals are obtained from a single photodiode, with object spatial frequency correlation encoded in time-domain bursts in the electronic signal from the photodiode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.