To assess the structural stability of mammalian sperm nuclei and make interspecies comparisons, we microinjected sperm nuclei from six different species into hamster oocytes and monitored the occurrence of sperm nuclear decondensation and male pronucleus formation. The time course of sperm decondensation varied considerably by species: human and mouse sperm nuclei decondensed within 15 to 30 min of injection, and chinchilla and hamster sperm nuclei did so within 45 to 60 min, but bull and rat sperm nuclei remained intact over this same period of time. Male pronuclei formed in oocytes injected with human, mouse, chinchilla, and hamster sperm nuclei, but rarely in oocytes injected with bull or rat sperm nuclei. However, when bull sperm nuclei were pretreated with dithiothreitol (DTT) in vitro to reduce protamine disulfide bonds prior to microinjection, they subsequently decondensed and formed pronuclei in the hamster ooplasm. Condensed rat spermatid nuclei, which lack disulfide bonds, behaved similarly. The same six species of sperm nuclei were induced to undergo decondensation in vitro by treatment with DTT and detergent, and the resulting changes in nuclear size were monitored by phase-contrast microscopy and flow cytometry. As occurred in the oocyte, human sperm nuclei decondensed the fastest in vitro, followed shortly by chinchilla, mouse, and hamster and, after a lag, by rat and bull sperm nuclei. Thus species differences in sperm nuclear stability exist and appear to be related to the extent and/or efficiency of disulfide bonding in the sperm nuclei, a feature that may, in turn, be determined by the type(s) of sperm nuclear protamine(s) present.
The spermatogenic cell-specific variant of glyceraldehyde 3-phosphate dehydrogenase (GAPDS) has been cloned from a rat testis cDNA library and its pattern of expression determined. A 1,417 nucleotide cDNA has been found to encode an enzyme with substantial homology to mouse GAPDS (94% identity) and human GAPD2 (83% identity) isozymes. Northern blotting of rat tissue RNAs detected the 1.5 kb Gapds transcript in the testis and not in RNA from liver, spleen, epididymis, heart, skeletal muscle, brain, seminal vesicle, and kidney. The rat Gapds mRNA was first detected at day 29 of postnatal testis development, an age which coincides with the initial post-meiotic differentiation of round spermatids. When isolated rat spermatogenic cell RNA was probed for Gapds expression, transcripts were detected only in round spermatids and condensing spermatids, but not in pachytene spermatocytes, demonstrating haploid expression of the Gapds gene. However, immunohistochemical staining of rat testis sections with anti-GAPDS antisera did not detect GAPDS in round spermatids, but localized the protein only to stage XIII and later condensing spermatids as well as testicular spermatozoa, indicating that Gapds expression is translationally regulated. The current results are similar to those previously obtained for mouse GAPDS and human GAPD2, suggesting that reliable comparisons can be made between these species in toxicant screening and contraceptive development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.