the gaur is the largest extant cattle species and distributed across South and Southeast Asia. Around 85% of its current global population resides in India, however there has been a gradual decrease in the gaur population over the last two decades due to various anthropogenic activities. Mitochondrial genome is considered as an important tool for species identification and monitoring the populations of conservation concern and therefore it becomes an obligation to sequence the mitochondrial genome of Indian gaur. We report here for the first time 16,345 bp mitochondrial genome of four Indian gaur sequenced using two different approaches. Mitochondrial genome consisted of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a control region. Among the 37 genes, 28 were positioned on the H-strand and 9 were positioned on the L-strand. The overall base composition appeared to be 33.5% A, 27.2% T, 25.9% C and 13.4% G, which yielded a higher AT content. The phylogenetic analysis using complete mitochondrial genome sequences unambiguously suggested that gaur is the maternal ancestor of domestic mithun. Moreover, it also clearly distinguished the three sub species of B. gaurus i.e. B. gaurus gaurus, B. gaurus readei and B. gaurus hubbacki. Among the three sub species, B. gaurus gaurus was genetically closer to B. gaurus readei as compared to B. gaurus hubbacki. The findings of our study provide an insight into the genetic structure and evolutionary history of indian gaur. The gaur, Bos gaurus also known as "Indian bison" is the largest living wild cattle species belonging to the family Bovidae 1. The historical distribution of gaur ranged throughout much of the mainland South and Southeast Asia. But, currently it occurs in a few Asian countries such as Bangladesh,
Although the gut microbiome benefits the host in several ways, how anthropogenic forces impact the gut microbiome of mammals is not yet completely known. Recent studies have noted reduced gut microbiome diversity in captive mammals due to changes in diet and living environment. However, no studies have been carried out to understand how the gut microbiome of wild mammals responds to domestication. We analyzed the gut microbiome of wild and captive gaur and domestic mithun (domestic form of gaur) to understand whether the gut microbiome exhibits sequential changes from wild to captivity and after domestication. Both captive and domestic populations were characterized by reduced microbial diversity and abundance as compared to their wild counterparts. Notably, two beneficial bacterial families, Ruminococcaceae and Lachnospiraceae, which are known to play vital roles in herbivores' digestion, exhibited lower abundance in captive and domestic populations. Consequently, the predicted bacterial functional pathways especially related to metabolism and immune system showed lower abundance in captive and domestic populations compared to wild population. Therefore, we suggest that domestication can impact the gut microbiome more severely than captivity, which might lead to adverse effects on host health and fitness. However, further investigations are required across a wide range of domesticates in order to understand the general trend of microbiome shifts in domestic animals.
In India, goats are considered to be one of the important livestock species that reinforce the rural economy. Even though India has 23 well-recognized goat breeds, the knowledge about their genetic diversity and domestication history is limited. In this study, we have analyzed the genetic diversity of 104 goats representing five different south Indian breeds using mtDNA D-loop region. The haplotype diversity of the breeds ranged from 0.9524 ± 0.0403 (Malabari) to 0.9921 ± 0.0154 (Kanni aadu). Analysis of molecular variance showed only 1.05% variation among breeds. On other hand, the variation within breed was remarkably high (98.95%) which suggested the weak phylogeographic structure of south Indian goats. The phylogenetic analysis revealed three haplogroups representing maternal lineages namely A, B and D. The analysis of 466 Indian goat sequences showed an additional lineage C. As reported in the previous studies, a major fraction of analyzed goats fell into haplogroup A. Our study confirms the presence of three maternal lineages for south Indian domestic goats.
India ranks the second in the world in terms of its sheep population with approximately 74.26 million represented by 44 well-described breeds in addition to several non-descript populations. Genetic diversity and phylogeography of Indian sheep breeds remain poorly understood, particularly for south Indian breeds. To have a comprehensive view of the domestication history of Indian sheep, we sequenced the mitochondrial DNA (mtDNA) control region (D-loop) and cytochrome b gene (CYTB) of 16 Indian domestic sheep breeds, most of them (13) from the south India. We analysed these sequences along with published data of domestic and wild sheep from different countries, including India. The haplotype diversity was relatively high in Indian sheep, which were classified into the three known mtDNA lineages, namely A, B and C. Lineage A was predominant among Indian sheep whereas lineages B and C were observed at low frequencies but C was restricted to the breeds of north and east India. The median joining network showed five major expanding haplogroups of lineage A (A1–A5). Out of which, A2, A4 and A5 were more frequent in Indian sheep in contrast to breeds from other parts of the world. Among the 27 Indian sheep breeds analysed, Mandya and Sonadi breeds were significantly different from other Indian breeds in the MDS analyses. This was explained by a very high contribution of lineage B into these two breeds. The Approximate Bayesian Computation (ABC) provided evidence for the domestication of lineage A sheep in the Indian subcontinent. Contrary to the current knowledge, we also found strong support for the introduction of lineage B into Indian subcontinent through sea route rather than from the Mongolian Plateau. The neighbour-joining tree of domestic and wild sheep revealed the close genetic relationship of Indian domestic sheep with Pakistani wild sheep O. vignei blanfordi. Based on our analyses and archaeological evidences, we suggest the Indian subcontinent as one of the domestication centres of the lineage A sheep, while lineage B sheep might have arrived into India from elsewhere via Arabian sea route. To the best of our knowledge, this is the first comprehensive study on Indian sheep where we have analysed more than 740 animals belonging to 27 sheep breeds raised in various regions of India. Our study provides insight into the understanding of the origin and migratory history of Indian sheep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.