In this study we identified the involvement of reactive oxygen species (ROS) in signaling and biological effects of the angiopoietin-1 (Ang-1)/tie-2 receptor pathway. Exposure of human umbilical vein endothelial cells to Ang-1 (50 ng/ml) induced rapid and transient production of ROS, particularly superoxide anions. ROS production was attenuated by preincubation with a peptide (gp91ds-tat) that inhibits the association of the gp91(phox) subunit with the p47(phox) subunit of NADPH oxidase and by the expression of a dominant-negative form of Rac-1 (Rac1N17). These results suggest that ROS production in response to Ang-1 exposure originates mainly from a Rac-1-dependent NADPH oxidase. Overexpression of antioxidants (superoxide dismutase and catalase) and Rac1N17, as well as preincubation with selective inhibitors of NADPH oxidase augmented basal p38 phosphorylation, inhibited Ang-1-induced PAK-1 phosphorylation and potentiated Ang-1-induced Erk1/2 phosphorylation but had no influence on AKT and SAPK/JNK phosphorylation by Ang-1. Exposure to Ang-1 (100 ng/ml) for 5 h induced a threefold increase in endothelial cell migration, a response that was strongly inhibited by overexpression of antioxidants, Rac1N17, and selective NADPH oxidase inhibitors. We conclude that activation of tie-2 receptors by Ang-1 triggers the production of ROS through activation of NADPH oxidase and that ROS generation by Ang-1 promotes endothelial cell migration while negatively regulating Erk1/2 phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.