In this study, single, mix, multilayer Polyvinyl alcohol (PVA) electrospun nanofibers with epidermal growth factor (EGF) and fibroblast growth factor (FGF) were fabricated and characterized as a biological wound dressing scaffolds. The biological activities of the synthesized scaffolds have been verified by in vitro and in vivo studies. The chemical composition finding showed that the identified functional units within the produced nanofibers (O–H and N–H bonds) are attributed to both growth factors (GFs) in the PVA nanofiber membranes. Electrospun nanofibers' morphological features showed long protrusion and smooth morphology without beads and sprayed with an average range of 198–286 nm fiber diameter. The fiber diameters decrement and the improvement in wettability and surface roughness were recorded after GFs incorporated within the PVA Nanofibers, which indicated potential good adoption as biological dressing scaffolds due to the identified mechanical properties (Young’s modulus) in between 18 and 20 MPa. The MTT assay indicated that the growth factor release from the PVA nanofibers has stimulated cell proliferation and promoted cell viability. In the cell attachment study, the GFs incorporated PVA nanofibers stimulated cell proliferation and adhered better than the PVA control sample and presented no cytotoxic effect. The in vivo studies showed that compared to the control and single PVA-GFs nanofiber, the mix and multilayer scaffolds gave a much more wound reduction at day 7 with better wound repair at day 14–21, which indicated to enhancing tissue regeneration, thus, could be a projected as a suitable burn wound dressing scaffold.
This quantitative study investigates acceptance towards implementation of telecardiology inMalaysia. The purpose of this study is to explore and understand the potential factors that could be the key elements in cultivating positive behaviour towards telecardiology adoption in Malaysia. Data was gathered by using survey method from 149 patients and publics who use internet service in their daily lives. The questionnaire was developed by integrating Technology Readiness Index (TRI), Technology Acceptance Model (TAM) and Theory of Planned Behaviour (TPB) which consists of 42 items. Descriptive statistics, factor analysis and one-way ANOVA were conducted to analyse the data. The analysis reveals that Malaysians generally hold a positive perception towards implementation of telecardiology with some reservations. Besides that, gender and income of the respondents were found to influence the variables in telecardiology readiness, hence suggesting these two variables be taken into considerations in the adoption of telecardiology. It is our hope that the result of this study provides some useful information for the policy makers and implementers to develop effective implementation strategies that could reduce users' resistance and adoption barriers in telecardiology adoption.
Metal stents used in the treatment of percutaneous coronary intervention (PCI) have revolutionized in treating atherosclerosis disease. Starting from the emergence of bare metal stent (BMS), this stent has been progressively developed into drug-eluting stent (DES) and biodegradable stent. By focusing on DES, various drugs have been used to coat metal stent with the aims to overcome in-stent restenosis and stent thrombosis. Even though, both problems are covered successfully by DES, however, DES projects long term complications including late stent thrombosis and delayed endotheliasation. Therefore, the utilisation of various drugs and polymers as a coating material was reviewed in this study to identify possible alternative to overcome the current DES problems. Ginseng is one of the drugs which possess several beneficial properties for the development of DES. Review on its implementation in cardiovascular applications suggests its potential in promoting endotheliasation while inhibiting the growth of smooth muscle cell to prevent late stent thrombosis.
Nanofibers have obtained considerable interest for use in various applications. Polyvinyl alcohol (PVA) has been used to achieve many benefits for diverse pharmaceutical and biomedical applications. We investigated in this study the effects of applied voltage, needle diameter, and flow rate on morphologies of PVA nanofibers. A constant volume of the feeding solutions delivered to the needle at a flow rate of 1 and 2 mL/h with high potentials of voltage was applied as they exit the needle. After that, the electrospun fibers collected on the ground connected aluminum foil. The electrical conductivity measurements of feeding solutions performed at room temperature. Characterization of the PVA nanofibers conducted using scanning electron microscopy (SEM) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The obtained nanofibers SEM images show beads when using the flow rate at 1 mL/h, whereas increasing the voltage and the flow rate improved the morphology of the nanofibers to uniform without beads. The FTIR results show that O-H and C-O bands are the main attributing to the chemical functionality of PVA nanofibers. As a conclusion, the high voltage and flow rate considered as the most critical parameters that impacted on PVA nanofibers morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.