We hypothesized that exposure to synthetic glucocorticoid during rapid brain growth (d50–52, birth = 68 days) in fetal guinea pigs modifies hypothalamo-pituitary-adrenal (HPA) function after birth, and that this involves changes in central corticosteroid receptor regulation. On the basis of our previous studies, we proposed that this effect is sex-specific. Pregnant guinea pigs were treated with dexamethasone (1 mg/kg) or vehicle on d50–51 of gestation, and juvenile offspring were euthanized at rest or following isolation stress on postnatal day 18. Dexamethasone increased the length of gestation (1.5 days) and altered body and organ (brain, heart, adrenal) growth. Resting plasma cortisol concentrations were significantly elevated in young male, but not female guinea pigs exposed to dexamethasone as fetuses. In female offspring born to dexamethasone-treated mothers, cortisol responses to isolation stress were attenuated. In males, elevated basal cortisol levels were not increased further by isolation. In the brain, hippocampal glucocorticoid receptor (GR) mRNA levels were significantly lower (10–25%) in females exposed to dexamethasone in utero. In contrast, GR mRNA levels were elevated (10–20%) in males from this prenatal treatment group. Mineralocorticoid receptor mRNA in the limbic system and GR mRNA levels in the pars distalis were unaffected. Pro-opiomelanocortin mRNA was significantly lower (30%) in the male pars intermedia following dexamethasone exposure. In conclusion, prenatal glucocorticoid exposure affects growth and HPA function as well as limbic and hypothalamic GR expression in juvenile offspring, and these effects are highly sex-specific.
Altered fetal environment can program the hypophyseal-pituitary-adrenal (HPA) axis development and thus affect endocrine function in later life. We hypothesized that 48 h of maternal nutrient restriction during the period of maximal fetal brain growth alters HPA function in adult offspring and leads to modified blood pressure regulation. Pregnant guinea pigs (n = 15) were deprived of food (water ad libitum) or fed normally (n = 13) on days 50 and 51 of gestation, after which they were all fed normally (birth = 68 days). Carotid artery and jugular vein catheters were implanted in adult guinea pig offspring (day 65). Animals were treated with corticotropin (ACTH1–24; 0.5 µg/kg), corticotropin-releasing hormone (CRH; 0.5 µg/kg) and insulin (5 units/kg), and pituitary-adrenal responses were measured. Guinea pigs were then euthanized and pituitaries removed for analysis of pro-opiomelanocortin (POMC) and glucocorticoid receptor (GR) mRNA levels. There was no effect of prenatal treatment on body weight, blood pressure or heart rate. In male offspring, both basal ACTH (p < 0.007) and basal cortisol (p < 0.05) levels were significantly reduced in animals whose mothers had been nutrient restricted (NR). In contrast, in female offspring, basal plasma ACTH was not different between offspring from NR mothers and controls; however, basal plasma cortisol concentrations were significantly (p < 0.01) elevated at 13.00 h in females born to NR mothers. Responses to HPA challenge were different between offspring from NR mothers and control offspring, and these differences were consistent with alterations in basal adrenocortical function. There was no effect of prenatal treatment on POMC mRNA levels in the pars distalis or pars intermedia. However, GR mRNA levels were significantly (p < 0.05) reduced in adult female offspring born to NR mothers. In conclusion, 48 h of maternal nutrient restriction during pregnancy has a long-term effect on HPA function in adult offspring, and this effect is highly sex specific, but does not result in alteration of blood pressure.
Thyroid hormone deprivation during fetal life has been implicated in neurodevelopmental morbidity. In humans, poor growth in utero is also associated with fetal hypothyroxinaemia. In guinea pigs, a short period (48 h) of maternal nutrient deprivation at gestational day (gd) 50 results in fetuses with hypothyroxinaemia and increased brain/body weight ratios. Thyroid hormone action is mediated by nuclear thyroid hormone receptors (TRs) and is dependent upon the prereceptor regulation of supply of triiodothyronine (T 3 ) by deiodinase enzymes. Examination of fetal guinea pig brains using in situ hybridization demonstrated widespread expression of mRNAs encoding TRα1, α2 and β1, with regional colocalization of deiodinase type 2 (D2) mRNA in the developing forebrain, limbic structures, brainstem and cerebellum at gd52. With maternal nutrient deprivation, TRα1 and β1 mRNA expression was significantly increased in the male, but decreased in the female fetal hippocampus and cerebellum and other areas showing high TR expression under euthyroid conditions. Maternal nutrient deprivation resulted in elevated D2 mRNA expression in males and females. Deiodinase type 3 (D3) mRNA expression was confined to the shell of the nucleus accumbens, the posterior amygdalohippocampal area, brainstem and cerebellum, and did not change with maternal nutrient deprivation. In conclusion, maternal nutrient deprivation resulted in sex-specific changes in TR mRNA expression and a generalized increase in D2 mRNAs within the fetal brain. These changes may represent a protective mechanism to maintain appropriate thyroid hormone action in the face of fetal hypothyroxinaemia in order to optimize brain development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.