Avaliação do desempenho de dois métodos de espacialização da Avaliação do desempenho de dois métodos de espacialização da Avaliação do desempenho de dois métodos de espacialização da Avaliação do desempenho de dois métodos de espacialização da precipitação pluvial para o Estado de Alagoas precipitação pluvial para o Estado de Alagoas precipitação pluvial para o Estado de Alagoas precipitação pluvial para o Estado de Alagoas
Objetivou-se neste trabalho, através da geoespacialização, a identificação das regiões aptas, restritas e inaptas ao cultivo do café (Coffea arabica L.) na Bacia do Rio Doce. Utilizou-se para tal, dados de temperatura e déficit hídrico de 50 estações meteorológicas instaladas na bacia e em bacias limítrofes. Os dados de déficit hídrico foram determinados utilizando o balanço hídrico segundo Thornthwaite & Mather (1955). Foram identificadas regiões equivalentes a um terço da bacia, localizadas na parte central e no nordeste da mesma, como sendo inaptas ao cultivo do café, conforme os critérios de produtividade relacionados com as exigências térmicas e hídricas da cultura.
The degradation of pastures is one of Brazil's biggest problems today and directly affects the sustainability of livestock. The animal production in a degraded pasture can be six times smaller than a grazing or recovered in good maintenance state. So we can consider that productivity could be increased in pasture areas, and analyze how productivity is limited by biophysical factors (climate, for example) versus management. Using spatial datasets, we compare yield patterns for the pasturelands within regions of similar climate. We use this comparison to evaluate the potential yield obtainable for pasturelands in different climates around the Brazil using the limits of Brazilian biomes. We then compare the actual yields currently being achieved with their ‘potential yield’ to estimate the ‘yield gap’, present spatial datasets of both the potential yields and yield gap patterns for pasturelands around the year 1995 and 2006. This study is intended to be an important new resource for scientists and policymakers alike, helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.
The evaluation of the impacts of land-use change on the water resources has been, many times, limited by the knowledge of past land use conditions. Most publications on this field present only a vague description of the past land use, which is usually insufficient for more comprehensive studies. This study presents the first reconstruction of the historical land use patterns in Amazonia, that includes both croplands and pasturelands, for the period 1940-1995. During this period, Amazonia experienced the fastest rates of land use change in the world, growing 4-fold from 193,269 km2 in 1940 to 724,899 km2 in 1995. This reconstruction is based on a merging of satellite imagery and census data, and provides a 5'x5' yearly dataset of land use in three different categories (cropland, natural pastureland and planted pastureland) for Amazonia. This dataset will be an important step towards understanding the impacts of changes in land use on the water resources in Amazonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.