Methionine is the universal amino acid for initiation of protein synthesis in all known organisms. The amino acid is coupled to a specific initiator methionine tRNA by methionyl-tRNA synthetase. In Escherichia coli, attachment of methionine to the initiator tRNA (tRNA(fMet)) has been shown to be dependent on synthetase recognition of the methionine anticodon CAU (complementary to the initiation codon AUG), [Schulman, L. H., & Pelka, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6755-6759]. We show here that alteration of the anticodon of tRNA(fMet) to GAC or GAA leads to aminoacylation of the initiator tRNA with valine or phenylalanine. In addition, tRNA(fMet) carrying these amino acids initiates in vivo protein synthesis when provided with initiation codons complementary to the modified anticodons. These results indicate that the sequence of the anticodon of tRNA(fMet) dictates the identity of the amino acid attached to the initiator tRNA in vivo and that there are no subsequent steps which prevent initiation of E. coli protein synthesis by valine and phenylalanine. The methods described here also provide a convenient in vivo assay for further examination of the role of the anticodon in tRNA amino acid acceptor identity.
Abstract. Our previous studies showed that in hepatic RER of young chickens, nascent apoAI is not associated with lipoprotein particles and only becomes part of these lipoprotein structures in the Golgi. In this study, we have used three different methodologies to determine the locations of apoAI and apoB in the RER and compared them to that of albumin. Immunoelectron microscopic examination of the RER cell fractions showed that both apoAI and apoB were associated only with the RER membrane whereas albumin was located both within the lumen and on the limiting membrane of the vesicles. To examine the possibility of membrane integration of nascent apoAI and apoB in the RER, we administered L-[3H]leucine to young chickens for 10 min, isolated RER, treated this cell fraction with buffers of varying pH, and measured the release of radioactive albumin, apoAI, and apoB. The majority of nascent apoAI (64%), nascent apoB (100%), and nascent albumin (97%) was released from RER vesicles at pH 11.2, suggesting that, like albumin, apolipoproteins are not integrated within the membrane. To determine if nascent apoproteins are exposed to the cytoplasmic surface, we administered L-[3H]leucine to young chickens and at various times isolated RER and Golgi cell fractions. Radioactive RER and Golgi cell fractions were treated with exogenous protease and the percent of nascent apoAI and apoB accessible to proteolysis was determined and compared to that of albumin. At 5, 10, and 20 min of labeling, 35-56% of nascent apoAI and 60-75% of apoB in RER were degraded, while albumin was refractive to this treatment. At all times both apolipoproteins and albumin present in Golgi cell fractions were protected from proteolysis. These biochemical and morphological findings indicate that apoAI and apoB are associated with the rough microsomal membrane and are partially exposed to the cytoplasmic surface at early stages of secretion. They may later enter the luminal side of the ER and, on entering the Golgi, form lipoprotein particles.
Apolipoprotein A-I (apoA-I) is a major protein component of plasma high-density lipoprotein in all species studied, and plays an important role in cholesterol homeostasis. In an earlier study, we cloned and structurally characterized the chicken apoA-I gene. In this study, the 5'-flanking region of the chicken apoA-I gene was sequenced and functionally characterized. Sequence analysis of the 510-nucleotide 5' upstream region revealed the presence of TATA and CCAAT boxes. In addition, we identified binding sites for several transcription factors such as Sp1, AP1, and NFI.2. When the 5' fragment was ligated into a promoterless CAT vector and transfected into a chicken hepatocarcinoma cell line (LMH), the bacterial chloramphenicol acetyl transferase (CAT) gene was expressed, suggesting transcriptional regulation is associated with this region. Transfection studies with other 5' deletion constructs revealed that the sequence spanning the region -82 to +87 contained the major transcriptional activity. DNase I footprinting, gel retardation, and Southwestern blot analyses showed that the fragment interacts with nuclear proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.