Candidaemia is one of the leading causes of nosocomial bloodstream infections. There is a rise in the incidence of non-albicans candidaemia and emergence of anti-fungal resistance. We performed a retrospective laboratory-based study over a period of 2 years (January 2009 to December 2010) at our quaternary care multi super-specialty hospital in Southern India. There had been 68 Candida isolates detected from the bloodstream of 55 patients during the study period. Overall, 74% of cases were due to non-albicans Candida. C. tropicalis was most commonly isolated (39.7%), followed by C. albicans (26.4%). All Candida isolates remain susceptible to voriconazole, whereas highest degree of resistance was observed for fluconazole.
In India, the case fatality ratio of the pandemic A (H1N1) pdm09 influenza was relatively higher when compared to seasonal Influenza A infection. Hypercytokinemia or "cytokine storm" has been previously implicated in the pathogenesis of other influenza viruses. The present study was undertaken to compare the cytokine profiles of A (H1N1) pdm09 influenza and seasonal H3 infection in Indian population and to correlate the findings with disease severity. Plasma levels of 18 cytokines/chemokines were measured by flow-cytometry using a bead based assay in patients infected with A (H1N1) pdm09 virus (n = 96) and Influenza A seasonal H3 virus (n = 30) categorised into mild, moderate, and severe groups along with healthy controls (n = 36). There was an overall trend indicating an exuberant cytokine/chemokine response in A (H1N1) pdm09 as compared to seasonal H3 influenza, which was more evident in severe cases, suggesting a role for these cytokines/chemokines in the pathogenesis of A(H1N1) pdm09. Increased levels of CXCL-8/IL-8, IL-10, IL-6, and IL-17A were seen in both A(H1N1) pdm09 influenza and seasonal H3 cases when compared to healthy controls. However, dysregulated production of proinflammatory chemokines was seen more pronounced in A (H1N1) pdm09 influenza cases as compared to seasonal H3 cases. This study has brought forth the potential role of chemokines as prognostic indicators of disease severity and outcome. Further research on modulating the host immune response to limit severity of the disease could help in the treatment and management of influenza.
Objective The extended-spectrum beta-lactamase (ESBL) and carbapenemase producing gram-negative bacteria among the members of Enterobacteriaceae are of major health concern globally. The present study was carried out to determine proportion and genetic characterization of ESBL and carbapenemase producing Klebsiella pneumoniae strains isolated from intensive care units of a tertiary care hospital. Materials and methods A total of 250 non-duplicate K. pneumoniae isolates were recovered from various clinical specimens from our intensive care units from May 2014 to May 2015. Antibiotic susceptibility testing was performed as recommended by Clinical and Laboratory Standard Institute. Phenotypic identification of ESBL and carbapenemase producing isolates were confirmed by the double-disk synergy test, modified Hodge test, imipenem and imipenem-EDTA combined test, respectively. Molecular characterization of β-lactamase genes were performed by polymerase chain reaction. Results Out of 250 Klebsiella pneumonaie , 84% isolates were ESBL producers, 66% were carbapenem resistant based on their reduced susceptibility to imipenem, meropenem and ertapenem. Among these 165 carbapenem resistant isolates, 9.7% were positive for bla NDM-1 and these isolates were also found to be positive for one or more bla genes. Co-carriage of AmpC in ESBL and carbapenem resistant isolates were 7.8% and 3.6%, respectively and were negative for bla KPC genes. Conclusion The study indicated the prevalence of ESBLs and bla NDM-1 , with additional bla genes and AmpC among the K. pneumoniae isolates in our intensive care units. NDM-1 producing Enterobacteriaceae is a growing health care problem. Detection of the prevalence of antibacterial resistance pattern helps towards improved antibiotic policy and empirical antibiotic treatment. How to cite this article Beena HB, Shenoy SM, et al. Molecular Characterization of Extended Spectrum β-lactamase and Carbapenemase Producing Klebsiella pneumoniae from a Tertiary Care Hospital. Indian J of Crit Care Med 2019;23(2):61-66.
Introduction: Carbapenem resistance in Gram-negative bacilli (GNB) is a major concern in the management of resistant infections. The mechanism of carbapenem resistance is most commonly mediated by carbapenemases. The five most common genes (NDM, KPC, VIM, OXA, and IMP) are responsible for carbapenemase production. Knowledge of these genes is important for the management of the disease. Objective: To estimate the prevalence of different genes responsible for carbapenemase production in GNB at a tertiary healthcare centre in South India. Method: In this retrospective study, samples were collected over 16 months. Carbapenem-resistant GNB underwent to Xpert Carba-R assay (Cepheid, Sunnyvale, California, USA) for the detection of five important genes responsible for carbapenemase production: NDM, KPC, VIM, OXA, and IMP. Results: Out of 184 carbapenem-resistant GNB, 20 samples were not included in this study. The rest of the 164 samples grew Klebsiella pneumoniae (152), Escherichia coli (10), and Enterobacter (2). OXA-48 and NDM were the most common genes responsible, with 137 (84.5%) and 95 (58.6%), respectively. Among them, 70 (43.2%) showed the presence of both genes, and 1 (0.6%) showed the presence of OXA-48, NDM, and VIM. Individually, 66 (40.7%) of OXA-48, 24 (14.8%) of NDM, and one (0.6%) of VIM. In this study, the authors did not find the presence of IMP or KPC genes. Conclusion: As a result of limited options and the higher cost of antibiotics for carbapenem-resistant infections, knowledge of these genes helps in the selection and rational use of antibiotics reduces the cost of management and will prevent mortality and morbidity from these infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.