Fully-aromatic, two-dimensional covalent organic frameworks (2D COFs) are hailed as candidates for electronic and optical devices, yet to-date few applications emerged that make genuine use of their rational, predictive design principles and permanent pore structure. Here, we present a 2D COF made up of chemoresistant β-amino enone bridges and Lewis-basic triazine moieties that exhibits a dramatic real-time response in the visible spectrum and an increase in bulk conductivity by two orders of magnitude to a chemical trigger - corrosive HCl vapours. The optical and electronic response is fully reversible using a chemical switch (NH
3
vapours) or physical triggers (temperature or vacuum). These findings demonstrate a useful application of fully-aromatic 2D COFs as real-time responsive chemosensors and switches.
Water splitting using polymer photocatalysts is a key technology to a truly sustainable hydrogen-based energy economy. Synthetic chemists have intuitively tried to enhance photocatalytic activity by tuning the length of π-conjugated domains of their semiconducting polymers, but the increasing flexibility and hydrophobicity of ever-larger organic building blocks leads to adverse effects such as structural collapse and inaccessible catalytic sites. To reach the ideal optical band gap of about 2.3 eV, A library of eight sulfur and nitrogen containing porous polymers (SNPs) with similar geometries but with optical band gaps ranging from 2.07 to 2.60 eV was synthesized using Stille coupling. These polymers combine π-conjugated electron-withdrawing triazine (C N ) and electron donating, sulfur-containing moieties as covalently bonded donor-acceptor frameworks with permanent porosity. The remarkable optical properties of SNPs enable fluorescence on-off sensing of volatile organic compounds and illustrate intrinsic charge-transfer effects.
Water splitting using polymer photocatalysts is a key technology to a truly sustainable hydrogen‐based energy economy. Synthetic chemists have intuitively tried to enhance photocatalytic activity by tuning the length of π‐conjugated domains of their semiconducting polymers, but the increasing flexibility and hydrophobicity of ever‐larger organic building blocks leads to adverse effects such as structural collapse and inaccessible catalytic sites. To reach the ideal optical band gap of about 2.3 eV, A library of eight sulfur and nitrogen containing porous polymers (SNPs) with similar geometries but with optical band gaps ranging from 2.07 to 2.60 eV was synthesized using Stille coupling. These polymers combine π‐conjugated electron‐withdrawing triazine (C3N3) and electron donating, sulfur‐containing moieties as covalently bonded donor–acceptor frameworks with permanent porosity. The remarkable optical properties of SNPs enable fluorescence on‐off sensing of volatile organic compounds and illustrate intrinsic charge‐transfer effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.