Despite the success of the BDI approach to agent teamwork, initial role allocation (i.e. deciding which agents to allocate to key roles in the team) and role reallocation upon failure remain open challenges. What remain missing are analysis techniques to aid human developers in quantitatively comparing different initial role allocations and competing role reallocation algorithms. To remedy this problem, this paper makes three key contributions. First, the paper introduces RMTDP (Role-based Multiagent Team Decision Problem), an extension to MTDP [9], for quantitative evaluations of role allocation and reallocation approaches. Second, the paper illustrates an RMTDP-based methodology for not only comparing two competing algorithms for role reallocation, but also for identifying the types of domains where each algorithm is suboptimal, how much each algorithm can be improved and at what computational cost (complexity). Such algorithmic improvements are identified via a new automated procedure that generates a family of locally optimal policies for comparative evaluations. Third, since there are combinatorially many initial role allocations, evaluating each in RMTDP to identify the best is extremely difficult. Therefore, we introduce methods to exploit task decompositions among subteams to significantly prune the search space of initial role allocations. We present experimental results from two distinct domains.
Many current large-scale multiagent team implementations can be characterized as following the belief-desire-intention (BDI) paradigm, with explicit representation of team plans. Despite their promise, current BDI team approaches lack tools for quantitative performance analysis under uncertainty. Distributed partially observable Markov decision problems (POMDPs) are well suited for such analysis, but the complexity of finding optimal policies in such models is highly intractable. The key contribution of this article is a hybrid BDI-POMDP approach, where BDI team plans are exploited to improve POMDP tractability and POMDP analysis improves BDI team plan performance. Concretely, we focus on role allocation, a fundamental problem in BDI teams: which agents to allocate to the different roles in the team. The article provides three key contributions. First, we describe a role allocation technique that takes into account future uncertainties in the domain; prior work in multiagent role allocation has failed to address such uncertainties. To that end, we introduce RMTDP (Role-based Markov Team Decision Problem), a new distributed POMDP model for analysis of role allocations. Our technique gains in tractability by significantly curtailing RMTDP policy search; in particular, BDI team plans provide incomplete RMTDP policies, and the RMTDP policy search fills the gaps in such incomplete policies by searching for the best role allocation. Our second key contribution is a novel decomposition technique to further improve RMTDP policy search efficiency. Even though limited to searching role allocations, there are still combinatorially many role allocations, and evaluating each in RMTDP to identify the best is extremely difficult. Our decomposition technique exploits the structure in the BDI team plans to significantly prune the search space of role allocations. Our third key contribution is a significantly faster policy evaluation algorithm suited for our BDI-POMDP hybrid approach. Finally, we also present experimental results from two domains: mission rehearsal simulation and RoboCupRescue disaster rescue simulation
Emotions play a significant role in human teamwork. However, despite the significant progress in multiagent teamwork, as well as progress in computational models of emotions, there have been very few investigations of the role of emotions in multiagent teamwork. This chapter attempts a first step towards addressing this shortcoming. It provides a short survey of the state of the art in multiagent teamwork and in computational models of emotions. It considers three cases of teamwork, in particular, teams of simulated humans, agent-human teams and pure agent teams, and examine the effects of introducing emotions in each. Finally, it also provides preliminary experimental results illustrating the impact of emotions on multiagent teamwork.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.