This work documents the first example of deposition of high-quality Gd(2)O(3) thin films in a surface-controlled, self-limiting manner by a water-based atomic layer deposition (ALD) process using the engineered homoleptic gadolinium guanidinate precursor [Gd(DPDMG)(3)]. The potential of this class of compound is demonstrated in terms of a true ALD process, exhibiting pronounced growth rates, a high-quality interface between the film and the substrate without the need for any additional surface treatment prior to the film deposition, and most importantly, encouraging electrical properties.
Minimizing the dimensions of the electrode could directly impact the energy-efficient threshold switching and programming characteristics of phase change memory devices. A ∼12–15 nm AFM probe-tip was employed as one of the electrodes for a systematic study of threshold switching of as-deposited amorphous GeTe6 thin films. This configuration enables low power threshold switching with an extremely low steady state current in the on state of 6–8 nA. Analysis of over 48 different probe locations on the sample reveals a stable Ovonic threshold switching behavior at threshold voltage, VTH of 2.4 ± 0.5 V and the off state was retained below a holding voltage, VH of 0.6 ± 0.1 V. All these probe locations exhibit repeatable on-off transitions for more than 175 pulses at each location. Furthermore, by utilizing longer biasing voltages while scanning, a plausible nano-scale control over the phase change behavior from as-deposited amorphous to crystalline phase was studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.