Extracellular vesicles (EVs) are membrane-bound vesicles released by cells and act as media for transfer of proteins, small RNAs and mRNAs to distant sites. They can be isolated by different methods. However, the biological activities of the purified EVs have seldom been studied. In this study, we compared the use of ultracentrifugation (UC), ultra-filtration (UF), polymer-based precipitation (PBP), and PBP with size-based purification (PBP+SP) for isolation of EVs from human endometrial cells and mouse uterine luminal fluid (ULF). Electron microscopy revealed that the diameters of the isolated EVs were similar among the tested methods. UF recovered the highest number of EVs followed by PBP, while UC and PBP+SP were significantly less efficient (P<0.05). Based on the number of EVs-to-protein ratios, PBP had the least protein contamination, significantly better than the other methods (P<0.05). All the isolated EVs expressed exosome-enriched proteins CD63, TSG101 and HSP70. Incubation of the trophoblast JEG-3 cells with an equal amount of the fluorescence-labelled EVs isolated by the studied methods showed that many of the PBP-EVs treated cells were fluorescence positive but only a few cells were labelled in the UC- and UF-EVs treated groups. Moreover, the PBP-EVs could transfer significantly more miRNA to the recipient cells than the other 3 methods (P<0.05). The PBP method could isolate EVs from mouse ULF; the diameter of the isolated EVs was 62±19 nm and expressed CD63, TSG101 and HSP70 proteins. In conclusion, PBP could best preserve the activities of the isolated EVs among the 4 methods studied and was able to isolate EVs from a small volume of sample. The simple setup and low equipment demands makes PBP the most suitable method for rapid EV assessment and isolation of EVs in clinical and basic research settings.
Embryonic diapause is a maternally controlled phenomenon. The molecule controlling the onset of the phenomenon is unknown. We demonstrated that overexpression of microRNA let-7a or incubation with let-7g–enriched extracellular vesicles from endometrial epithelial cells prolonged the in vitro survival of mouse blastocysts, which developed into live pups after having been transferred to foster mothers. Similar to in vivo dormant blastocysts, let-7–induced dormant blastocysts exhibited low level of proliferation, apoptosis, and nutrient metabolism. Let-7 suppressed c-myc/mTORC1 and mTORC2 signaling to induce embryonic diapause. It also inhibited ODC1 expression reducing biosynthesis of polyamines, which are known to reactivate dormant embryos. Furthermore, the overexpression of let-7 blocked trophoblast differentiation and implantation potential of human embryo surrogates, and prolonged survival of human blastocysts in vitro, supporting the idea that embryonic diapause was an evolutionary conserved phenomenon. In conclusion, let-7 is the main factor inducing embryonic diapause.
Based on the rapid substitution reaction of the Au-S bond by selenol, we designed and synthesized a nanoprobe 5-FAM-peptide-AuNPs for selenol. Real-time imaging shows that this probe together with the molecular probe QCy7-H2O2 is able to simultaneously and differentially monitor the concentrations of selenol and H2O2 in living cells and in vivo.
Previous studies proposed that sodium selenite (NaSeO) was reduced to hydrogen selenide (HSe) and that HSe subsequently reacted with oxygen to generate superoxide anion (O), resulting in tumor cell oxidative stress and apoptosis. However, under the hypoxic conditions of a solid tumor, the anticancer mechanism of sodium selenite remains unclear. To reveal the exact anticancer mechanism of selenite in the real tumor microenvironment, we developed a mitochondria-targeting fluorescent nanosensor, Mito-N-D-MSN, which was fabricated from mesoporous silica nanoparticles (MSNs) loaded with two small-molecule fluorescent probes and a triphenylphosphonium ion as a mitochondria-targeting moiety. With Mito-N-D-MSN, the fluctuations in the contents of mitochondrial hydrogen selenide (HSe) and superoxide anion (O) in HepG2 cells induced by NaSeO were investigated in detail under normoxic and hypoxic conditions. The results showed that the mitochondrial HSe content increased gradually, while the O content remained unchanged in HepG2 cells under hypoxic conditions, which indicated that the anticancer mechanism of selenite involves nonoxidative stress in the real tumor microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.