SignificanceFerromagnetic insulators are highly needed as the necessary components in developing next-generation dissipationless quantum-spintronic devices. Such materials are rare, and those high symmetric ones without chemical doping available so far only work below 16 K. Here we demonstrate a tensile-strained LaCoO3 film to be a strain-induced high-temperature ferromagnetic insulator. Both experiments and first-principles calculations demonstrated that the tensile-strain–supported ferromagnetism reaches its strongest when the composition is nearly stoichiometric. It disappears when the Co2+ defect concentration reaches around 10%. The discovery represents a chance for the availability of such materials, a high operation temperature, and a high epitaxial integration potential for making future devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.