Motion of a charged particle in uniform magnetic field has been studied in detail, classically as well as quantum mechanically. However, classical dynamics of a charged particle in non-uniform magnetic field is solvable only for some specific cases. We present in this paper, a general integral equation for some specific class of non-uniform magnetic field and its solutions for some of them. We also examine the supersymmetry of Hamiltonians in exponentially decaying magnetic field with radial dependence and conclude that this kind of non-uniformity breaks supersymmetry.
Asymptotic symmetry plays an important role in determining physical observables of a theory. Recently, in the context of four dimensional asymptotically flat pure gravity and $$ \mathcal{N} $$
N
= 1 supergravity, it has been proposed that OPEs of appropriate celestial amplitudes can be used to find their asymptotic symmetries. In this paper we find the asymptotic symmetry algebras of four dimensional Einstein-Yang-Mills and Einstein-Maxwell theories using this alternative approach, namely using the OPEs of their respective celestial amplitudes. The algebra obtained here are in agreement with the known results in the literature.
Quantum error detection has always been a fundamental challenge in a fault-tolerant quantum computer. Hence, it is of immense importance to detect and deal with arbitrary errors to efficiently perform quantum computation. Several error detection codes have been proposed and realised for lower number of qubit systems. Here we present an error detection code for a (2n + 1)-qubit entangled state using two syndrome qubits and simulate it on International Business Machines 16-qubit quantum computer for a 13-qubit entangled system. The code is able to detect an arbitrary quantum error in any one of the first 2n qubits of the (2n + 1)-qubit entangled state and detects any bit-flip error on the last qubit of the (2n + 1)-qubit entangled state via measurements on a pair of ancillary error syndrome qubits. The protocol presented here paves the way for designing error detection codes for the general higher number of entangled qubit systems.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Black holes in a class of string compactifications, known as STU models, carry four electric and four magnetic charges. Furthermore a duality group, given by the product of three congruence subgroups of SL(2,Z), acts on these integer valued charges. By placing these eight charges at the eight corners of a Bhargava cube, we provide a classification of the duality orbits in these theories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.