The standard model predictive control (MPC) of three‐phase motors requires heavy calculation efforts for evaluating all voltage vectors (VV) in addition to the variable switching frequency, large current harmonics, and torque ripples. To deal with these problems, a computational efficient model predictive current control (MPCC) is proposed for a three‐phase interior permanent magnet synchronous motor (IPMSM). Initially, to avoid the protracted enumeration process, the reference voltage vector (RVV) is directly calculated by using the reference current generated by the maximum torque per ampere technique (MTPA), which is an additional control objective. The position of the RVV is utilized to define three candidate voltage vectors to be examined using the cost function, which determines the optimal vector. Secondly, an optimal duty cycle (ODC) is designed to minimize the error between the optimal vector and the reference vector reducing the current ripples. Furthermore, the proposed scheme is compared with the conventional MPCC techniques using MATLAB simulation and hardware in loop (HIL) with TMS320F28335 digital signal processor (DSP) experiments. A comprehensive analysis of the results for different operating conditions shows the effectiveness and robustness of the proposed method.
Model predictive control (MPC) is an efficient and growing approach to power converter control. This paper proposes an improved and simplified model predictive current control (MPCC) technique for a four-level nested neutral point clamped (4L-NNPC) converter. Conventional MPCC exhibits better performances as compared to the conventional linear control system such as fast dynamic response, consideration of the system constraints, and nonlinearities. However, the application of the conventional model predictive current control (MPCC) approach on complex systems provokes a significant number of calculations, which is the main hurdle to its practical implementation. To fix this flaw, this paper proposes an effective algorithm to shorten the execution time of the conventional MPCC. In this proposed technique, 216 current predictions of the conventional MPCC are skipped and converted into one required voltage vector (RVV) prediction. With this equivalent reference voltage transformation, the calculation burden of MPCC is significantly reduced, while the output performance is not influenced. The results of the simplified MPCC for the 4L-NNPC converter are analyzed and compared with the conventional MPCC. The computational time is reduced by 19.56% using the simplified MPCC, while keeping an approximately similar error of output currents. The switching frequency and total harmonic distortion (THD) of the proposed method are reduced by 8.16% and 0.07%, respectively, as compared to the conventional technique. These results demonstrate the fact that that the performance of a conventional MPCC is enhanced with the proposed MPCC. The proposed algorithm can be applied to several inverter topologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.