The composition of two polynomials g(h) = g • h is a polynomial. For a given polynomial f we are interested in finding a functional decomposition f = g • h. In this paper an algorithm is described, which computes all minimal decompositions in polynomial time. In contrast to many previous decomposition algorithms this algorithm works without restrictions on the degree of the polynomial and the characteristic of the ground field. The algorithm can be iteratively applied to compute all decompositions. It is based on ideas of Landau & Miller (1985) and Zippel (1991). Additionally, an upper bound on the number of minimal decompositions is given.
A univariate polynomial f over a field is decomposable if f = g • h = g(h) for nonlinear polynomials g and h. In order to count the decomposables, one wants to know, under a suitable normalization, the number of equal-degree collisions of the formlisions only occur in the wild case, where the field characteristic p divides deg f . Reasonable bounds on the number of decomposables over a finite field are known, but they are less sharp in the wild case, in particular for degree p 2 . We provide a classification of all polynomials of degree p 2 with a collision. It yields the exact number of decomposable polynomials of degree p 2 over a finite field of characteristic p. We also present an efficient algorithm that determines whether a given polynomial of degree p 2 has a collision or not.
This diploma thesis is concerned with functional decomposition f = g • h of polynomials. First an algorithm is described which computes decompositions in polynomial time. This algorithm was originally proposed by Zippel (1991). A bound for the number of minimal collisions is derived. Finally a proof of a conjecture in von zur Gathen, Giesbrecht & Ziegler (2010) is given, which states a classification for a special class of decomposable polynomials.Note. This is a modified version of the author's diploma thesis. The main changes concern notation and rephrasing of some results. DanksagungIch möchte mich an dieser Stelle bei den Personen bedanken, die mir bei der Erarbeitung dieser Diplomarbeit geholfen haben.Mein Dank gilt Herrn Prof. Dr. Joachim von zur Gathen für die Betreuung dieser Diplomarbeit. Besonders zu schätzen weiß ich seine kritischen Anmerkungen und die anregenden Gespräche mit ihm. Außerdem bedanke ich mich bei Herrn Konstantin Ziegler für seine Betreuung und für die zahlreichen fachlichen Diskussionen, Ratschläge und Hilfestellungen. Bei Herrn Prof. Dr. Nitin Saxena bedanke ich mich für die Übernahme der Zweitkorrektur.Für die sprachliche Durchsicht bedanke ich mich bei David Steimle und Jens Humrich.Nicht zuletzt möchte ich mich bei meiner Familie bedanken. Bei meinen Eltern und Großeltern bedanke ich mich für die Unterstützung während des Studiums. Ganz besonders bedanke ich mich bei meiner Freundin Ellen für ihre Geduld und ihren Beistand.Thus, we can easily compute all minimal blocks that are contained in B α . Note that if there is no nontrivial Block of G Bα , then B α is a minimal block of G.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.