Critical Care 2017, 21(Suppl 1):P349 Introduction Imbalance in cellular energetics has been suggested to be an important mechanism for organ failure in sepsis and septic shock. We hypothesized that such energy imbalance would either be caused by metabolic changes leading to decreased energy production or by increased energy consumption. Thus, we set out to investigate if mitochondrial dysfunction or decreased energy consumption alters cellular metabolism in muscle tissue in experimental sepsis. Methods We submitted anesthetized piglets to sepsis (n = 12) or placebo (n = 4) and monitored them for 3 hours. Plasma lactate and markers of organ failure were measured hourly, as was muscle metabolism by microdialysis. Energy consumption was intervened locally by infusing ouabain through one microdialysis catheter to block major energy expenditure of the cells, by inhibiting the major energy consuming enzyme, N+/K + -ATPase. Similarly, energy production was blocked infusing sodium cyanide (NaCN), in a different region, to block the cytochrome oxidase in muscle tissue mitochondria. Results All animals submitted to sepsis fulfilled sepsis criteria as defined in Sepsis-3, whereas no animals in the placebo group did. Muscle glucose decreased during sepsis independently of N+/K + -ATPase or cytochrome oxidase blockade. Muscle lactate did not increase during sepsis in naïve metabolism. However, during cytochrome oxidase blockade, there was an increase in muscle lactate that was further accentuated during sepsis. Muscle pyruvate did not decrease during sepsis in naïve metabolism. During cytochrome oxidase blockade, there was a decrease in muscle pyruvate, independently of sepsis. Lactate to pyruvate ratio increased during sepsis and was further accentuated during cytochrome oxidase blockade. Muscle glycerol increased during sepsis and decreased slightly without sepsis regardless of N+/K + -ATPase or cytochrome oxidase blocking. There were no significant changes in muscle glutamate or urea during sepsis in absence/presence of N+/K + -ATPase or cytochrome oxidase blockade.
ConclusionsThese results indicate increased metabolism of energy substrates in muscle tissue in experimental sepsis. Our results do not indicate presence of energy depletion or mitochondrial dysfunction in muscle and should similar physiologic situation be present in other tissues, other mechanisms of organ failure must be considered. , and long-term follow up has shown increased fracture risk [2]. It is unclear if these changes are a consequence of acute critical illness, or reduced activity afterwards. Bone health assessment during critical illness is challenging, and direct bone strength measurement is not possible. We used a rodent sepsis model to test the hypothesis that critical illness causes early reduction in bone strength and changes in bone architecture. Methods 20 Sprague-Dawley rats (350 ± 15.8g) were anesthetised and randomised to receive cecal ligation and puncture (CLP) (50% cecum length, 18G needle single pass through anterior and posterior wa...
Pre-pregnancy obesity and weight gain during pregnancy above the recommended limits increased the likelihood of neonatal hypoglycaemia among infants of GDM mothers. Further studies with larger cohorts are warranted to confirm our findings.
The temporal characteristics of speech can be captured by examining the distributions of the durations of measurable speech components, namely speech segment durations and pause durations. However, several barriers prevent the easy analysis of pause durations: The first problem is that natural speech is noisy, and although recording contrived speech minimizes this problem, it also discards diagnostic information about cognitive processes inherent in the longer pauses associated with natural speech. The second issue concerns setting the distribution threshold, and consists of the problem of appropriately classifying pause segments as either short pauses reflecting articulation or long pauses reflecting cognitive processing, while minimizing the overall classification error rate. This article describes a fully automated system for determining the locations of speech-pause transitions and estimating the temporal parameters of both speech and pause distributions in natural speech. We use the properties of Gaussian mixture models at several stages of the analysis, in order to identify theoretical components of the data distributions, to classify speech components, to compute durations, and to calculate the relevant statistics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.