Despite the potential of repetitive transcranial magnetic stimulation (rTMS) to improve performances in patients suffering from motor neuronal afflictions, its effect on motor performance enhancement in healthy subjects during a specific sport task is still unknown. We hypothesized that after an intermittent theta burst (iTBS) treatment, performance during the Wingate Anaerobic Test (WAnT) will increase and supraspinal fatigue following the exercise will be lower in comparison to a control treatment. Ten subjects participated in two randomized experiments consisting of a WAnT 5 min after either an iTBS or a control treatment. We determined voluntary activation (VA) of the right knee extensors with TMS (VATMS) and with peripheral nerve stimulation (VAPNS) of the femoral nerve, before and after the WAnT. T-tests were applied to the WAnT results and a two way within subject ANOVA was applied to VA results. The iTBS treatment increased the peak power and the maximum pedalling cadence and suppressed the reduction of VATMS following the WAnT compared to the control treatment. No behavioral changes related to fatigue (mean power and fatigue index) were observed. These results indicate for the first time that iTBS could be used as a potential intervention to improve anaerobic performance in a sport specific task.
Endurance sports pose a plethora of mental demands that exercisers have to deal with. Unfortunately, investigations of exercise-specific demands and strategies to deal with them are insufficiently researched, leading to a gap in knowledge about athletic requirements and strategies used to deal with them. Here, we investigated which obstacles exercisers experience during an anaerobic (Wingate test) and an aerobic cycling test (incremental exercise test), as well as the strategies they considered helpful for dealing with these obstacles (qualitative analysis). In addition, we examined whether thinking of these obstacles and strategies in terms of if-then plans (or implementation intentions; i.e., “If I encounter obstacle O, then I will apply strategy S!”) improves performance over merely setting performance goals (i.e., goal intentions; quantitative analysis). N = 59 participants (age: M = 23.9 ± 6.5 years) performed both tests twice in a 2-within (Experimental session: 1 vs. 2) × 2-between (Condition: goal vs. implementation intention) design. Exercisers’ obstacles and strategies were assessed using structured interviews in Session 1 and subjected to thematic analysis. In both tests, feelings of exertion were the most frequently stated obstacle. Motivation to do well, self-encouragement, and focus on the body and on cycling were frequently stated strategies in both tests. There were also test-specific obstacles, such as boredom reported in the aerobic test. For session 2, the obstacles and strategies elicited in Session 1 were used to specify if-then plans. Bayesian mixed-factor ANOVA suggests, however, that if-then plans did not help exercisers to improve their performance. These findings shed novel light into the mental processes accompanying endurance exercise and the limits they pose on performance.
PurposeActive recovery is often used by athletes after strenuous exercise or competition but its underlying mechanisms are not well understood. We hypothesized that active recovery speeds-up recovery processes within the muscle and the central nervous system (CNS).MethodsWe assessed muscular and CNS recovery by measuring the voluntary activation (VA) in the vastus lateralis muscle with transcranial magnetic stimulation (VATMS) and peripheral nerve stimulation (VAPNS) during maximal voluntary contractions (MVC) of the knee extensors in 11 subjects. Measurements were performed before and after a fatiguing cycling time-trial, after an active and a passive recovery treatment and after another fatiguing task (1 min MVC). The measurements were performed a second time 24 h after the time-trial.ResultsWe observed a time × group interaction effect for VATMS (p = 0.013). Post-hoc corrected T-tests demonstrated an increased VATMS after active recovery when measured after the 1 min MVC performed 24 h after the time-trial (mean ± SD; 95.2 ± 4.1% vs. 89.2 ± 6.6%, p = 0.026). No significant effects were observed for all other variables.ConclusionsActive recovery increased aspects of central, rather than muscle recovery. However, no effect on MVC was seen, implying that even if active recovery speeds up CNS recovery, without affecting the recovery of muscle contractile properties, this doesn´t translate into increases in overall performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.