We propose an analytical, time domain model for microring and microdisk modulators which considers both their electrical and optical properties. Theory of the dynamics of microring/microdisk is discussed, and general solutions to the transfer matrix representation are presented. Both static and dynamic predictions from the model are compared to measurement results to demonstrate the accuracy of our model. Static predictions and measurements are presented for power and phase responses whereas dynamic predictions and measurements are presented for small-signal and large-signal operations. The model verifies that the chirping and modulation bandwidth of the modulators depend on the detuning state. Finally, the accuracy and scalability of several techniques employed in the model are discussed.
Advanced optical interconnects require high-speed links, which can be achieved by combining high channel rates with wavelength-division multiplexing (WDM). We report a multi-channel transmitter using cascaded microring modulators (MRMs) in silicon photonics. One MRM works as a flexible-grid optical comb generator, while the others work as channel modulators. With a single-wavelength laser input, we achieve flexible channel spacing (up to 25 GHz) with a tone-to-noise ratio above 54 dB at low power consumption of less than 4.6 mW. We examine experimentally multi-channel transmission modulating data onto adjacent comb lines without significant signal crosstalk. This single-laser, flexible-grid WDM transmitter is a scalable solution: more comb lines can be obtained using uncoupled MRMs in a series. To the best of our knowledge, this is the first demonstration of monolithic integration of a comb generator and multi-channel modulators for ultra-compact, power-efficient WDM photonic interconnects.
Future super-computer interconnect systems and data centers request ultrahigh data rate links at low cost and power consumption, for which transmitters with a high level of integration and spectral efficient formats are key components. We report 60 Gb/s pulse-amplitude modulation (PAM-4) of an optical signal using a dual-microring silicon photonics circuit, making a low-power, digital-to-analog converter (DAC)-less PAM modulator. The power consumption is evaluated below 100 fJ/bit, including thermal adjustments. To the best of our knowledge, these results feature the lowest reported power consumption for PAM signaling in a DAC-less scheme for data rate beyond 40 Gb/s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.