This study represents a thermodynamic evaluation and carbon footprint analysis of the application of hydrogen‐based energy storage systems in residential buildings. In the system model, buildings are equipped with photovoltaic (PV) modules and a hydrogen storage system to conserve excess PV electricity from times with high solar irradiation to times with low solar irradiation. Short‐term storages enable a degree of self‐sufficiency of approximately 60 % for a single‐family house (SFH) [multifamily house (MFH): 38 %]. Emissions can be reduced by 40 % (SFH) (MFH: 30 %) compared to households without PV modules. These results are almost independent of the applied storage technology. For seasonal storage, the degree of self‐sufficiency ranges between 57 and 83 % (SFH). The emission reductions highly depend on the storage technology, as emissions caused by manufacturing the storage dominate the emission balance. Compressed gas or liquid organic hydrogen carriers are the best options, enabling emission reductions of 40 %.
In Anbetracht der zukünftig starken Zunahme an fluktuierender Stromerzeugung stellt sich die Frage, wie unser Stromsystem auf die dadurch entstehenden Herausforderungen vorbereitet werden kann. In diesem Umstellungsprozess muss auch geklärt werden, wie bereits vorhandene Ressourcen zur Netzstabilisierung genutzt werden können. Im Forschungsprojekt Optibiosy wurden sowohl die technischen, als auch die wirtschaftlichen Potenziale von Biogasanlagen untersucht.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.