The auditory system has two parallel streams in the brain that have been implicated in auditory fear learning. The lemniscal stream has selective neurons that are tonotopically organized and is thought to be important for sound discrimination. The nonlemniscal stream has less selective neurons, which are not tonotopically organized, and is thought to be important for multimodal processing and for several forms of learning. Therefore, it has been hypothesized that the lemniscal, but not the nonlemniscal, pathway supports discriminative fear to auditory cues. To test this hypothesis we assessed the effect of electrolytic lesions to the ventral, or medial, division of the medial geniculate nucleus (MGv or MGm, which correspond, respectively, to the lemniscal and the nonlemniscal auditory pathway to amygdala) on the acquisition, expression and extinction of fear responses in discriminative auditory fear conditioning, where one tone is followed by shock (conditioned stimulus, CS and CSϪ even after an extinction session to the CS ϩ . In summary, our findings suggest that the lemniscal pathway is important for discriminative learning, whereas the nonlemniscal is important for negatively regulating fear responses.
In many territorial species androgens respond to social interactions. This response has been interpreted as a mechanism for adjusting aggressive motivation to a changing social environment. Therefore, it would be adaptive to anticipate social challenges and reacting to their clues with an anticipatory androgen response to adjust agonistic motivation to an imminent social challenge. Here we test the hypothesis of an anticipatory androgen response to territorial intrusions using classical conditioning to establish an association between a conditioned stimulus (CS ؍ light) and an unconditioned stimulus (US ؍ intruder male) in male cichlid fish (Oreochromis mossambicus). During the training phase conditioned males (CS؊US paired presentations) showed a higher decrease in latency for agonistic response toward the intruder than unconditioned males (CS-US unpaired presentations). In the test trial, conditioned males showed an increase in androgen levels (i.e., testosterone and 11-ketotestosterone) relative to baseline, in response to the CS alone. This increase was similar to that of control males exposed to real intruders after CS, whereas unconditioned males showed a decrease in androgen levels in response to the CS. Furthermore, conditioned males were significantly more aggressive than unconditioned males during the post-CS period on test trial, even though the intruder male was not present during this period. These results reveal the occurrence of a conditioned androgen response that may give territorial males an advantage in mounting a defense to upcoming territorial intrusions, if the ability to readily elevate androgens does not co-vary with other traits that bear costs.aggression ͉ androgens ͉ associative learning
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.