A comparative study of the localization of 125I-labeled atrial natriuretic factor (ANF) and 125I-labeled angiotensin II (ANG II) binding sites in the glomerulus of the rat, after an intravascular injection, has been done by ultrastructural radioautography. 125I-ANF binding sites are localized predominantly on the podocytes of the visceral epithelium (63%) followed by the endothelium of capillaries (14%), the parietal epithelium (13%), and finally mesangial cells (10%). In a comparative study, it was confirmed that 125I-ANG II uptake is localized predominantly on mesangial cells (60%) followed by epithelial visceral cells (23%) and the endothelium of capillaries (16%). Using isolated rat glomeruli, it was confirmed that ANG II decreases glomerular size (maximum effect of 15%) with an apparent half maximum effective concentration (EC50) between 10(-9) and 10(-8) M. Although ANF alone has no apparent effect on glomerular size, it inhibits the contractile effect of ANG II with a half maximum inhibitory concentration (IC50) between 10(-11) and 10(-10) M. These results suggest that an intraglomerular mechanism other than glomerular arteriolar resistance may be involved in the modulation of glomerular filtration rate by ANF. The presence of 125I-ANF uptake mainly in foot processes of visceral epithelial cells of glomeruli in vivo and the inhibition of ANG II decrease in glomerular size by ANF in vitro raise the possibility that ANF may regulate the ultrafiltration coefficient by two mechanisms: modulation of glomerular permeability, and surface area.
This study evaluates the effect of microwave treatment in grape maceration at laboratory scale on the content of free and glycosidically bound varietal compounds of must and wines and on the overall aroma of wines produced with and without SO2. The volatile compounds were extracted by solid phase extraction and analyzed by gas chromatography–mass spectrometry, carrying out a sensory evaluation of wines by quantitative descriptive analysis. Microwave treatment significantly increased the free and bound fraction of most varietal compounds in the must. Wines from microwave maceration showed faster fermentation kinetics and shorter lag phase, resulting in an increase in some volatile compounds of sensory relevance. The absence of SO2 caused a decrease in concentration of some volatile compounds, mainly fatty acids and esters. The sensory assessment of wines from microwave treatment was higher than the control wine, especially in wines without SO2, which had higher scores in the “red berry” and “floral” odor attributes and a more intense aroma. This indicates that the pre-fermentative treatment of grapes with microwaves could be used to increase the wine aroma and to reduce the occurrence of SO2.
Congestive heart failure (CHF) is a leading cause of mortality with an increasing prevalence in human and canine populations. While furosemide is a loop diuretic prescribed for the majority of CHF patients to reduce fluid retention, it also activates the renin-angiotensin aldosterone system (RAAS) which further contributes to the accelerated progression of heart failure. Our objective was to quantify the effect of furosemide on diuresis, renin activity (RA), and aldosterone (AL) in dogs, using a combined multiple comparisons and model-based approach (MCP-Mod). Twenty-four healthy beagle dogs were allocated to four treatment groups (saline vs. furosemide 1, 2, and 4 mg/kg i.m., q12 h for 5 days). Data from RA and AL values at furosemide trough concentrations, as well as 24-h Diuresis, were analyzed using the MCP-Mod procedure. A combination of E models adequately described the dose-response relationships of furosemide for the various endpoints. The dose-response curves of RA and AL were found to be well in agreement, with an apparent shallower slope compared with 24-h Diuresis. The research presented herein constitutes the first application of MCP-Mod in Veterinary Medicine. Our data show that furosemide produces a submaximal effect on diuresis at doses lower than those identified to activate the circulating RAAS.
Phenolic compounds are responsible for color and, with it, the quality of red wines. Its content will depend, among other factors, on the oenological techniques applied in the winery and, among them, the maceration time. Long maceration times can generate logistical problems at the moment of maximum grape entry into the winery. Applying techniques that accelerate the extraction of phenolic compounds from the grape solid parts to the must-wine would allow reducing the maceration time. Among the techniques of interest, microwaves use electromagnetic waves to produce dipole rotation and ion conduction, which can increase the elasticity of cell walls and cause the destruction of the cell membrane, facilitating the phenolic compound extraction. To study this effect, crushed grapes of the Cabernet Sauvignon variety were treated with this technology, macerated for 72 h and 7 days, and compared with respect to a control wine without any treatment. The results showed that the application of microwaves to the crushed grape favored a rapid extraction of the phenolic compounds, increasing the color of the wine and with only 72 h of maceration, the wines from treated grapes showed a similar phenolic content and chromatic characteristics to a control wine with 7 maceration days. The extraction of the less astringent skin tannins and the formation of stable pigments was also favored indicating that this technology may allow reducing the maceration time during the winemaking process without affecting the quality and stability of the wine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.