Lacticin 3147 is a two-peptide lantibiotic produced by Lactococcus lactis in which both peptides, LtnA1 and LtnA2, interact synergistically to produce antibiotic activities in the nanomolar concentration range; the individual peptides possess marginal (LtnA1) or no activity (LtnA2). We analysed the molecular basis for the synergism and found the cell wall precursor lipid II to play a crucial role as a target molecule. Tryptophan fluorescence measurements identified LtnA1, which is structurally similar to the lantibiotic mersacidin, as the lipid II binding component. However, LtnA1 on its own was not able to substantially inhibit cell wall biosynthesis in vitro; for full inhibition, LtnA2 was necessary. Both peptides together caused rapid K(+) leakage from intact cells; in model membranes supplemented with lipid II, the formation of defined pores with a diameter of 0.6 nm was observed. We propose a mode of action model in which LtnA1 first interacts specifically with lipid II in the outer leaflet of the bacterial cytoplasmic membrane. The resulting lipid II:LtnA1 complex is then able to recruit LtnA2 which leads to a high-affinity, three-component complex and subsequently inhibition of cell wall biosynthesis combined with pore formation.
The activity of lanthionine-containing peptide antibiotics (lantibiotics) is based on different killing mechanisms which may be combined in one molecule. The prototype lantibiotic nisin inhibits peptidoglycan synthesis and forms pores through specific interaction with the cell wall precursor lipid II. Gallidermin and epidermin possess the same putative lipid II binding motif as nisin; however, both peptides are considerably shorter (22 amino acids, compared to 34 in nisin). We demonstrate that in model membranes, lipid II-mediated pore formation by gallidermin depends on membrane thickness. With intact cells, pore formation was less pronounced than for nisin and occurred only in some strains. In Lactococcus lactis subsp. cremoris HP, gallidermin was not able to release K ؉ , and a mutant peptide, [A12L]gallidermin, in which the ability to form pores was disrupted, was as potent as wild-type gallidermin, indicating that pore formation does not contribute to killing. In contrast, nisin rapidly formed pores in the L. lactis strain; however, it was approximately 10-fold less effective in killing. The superior activity of gallidermin in a cell wall biosynthesis assay may help to explain this high potency. Generally, it appears that the multiple activities of lantibiotics combine differently for individual target strains.
We analyzed the mode of action of the lantibiotic plantaricin C (PlnC), produced by Lactobacillus plantarum LL441. Compared to the well-characterized type A lantibiotic nisin and type B lantibiotic mersacidin, which are both able to interact with the cell wall precursor lipid II, PlnC displays structural features of both prototypes. In this regard, we found that lipid II plays a key role in the antimicrobial activity of PlnC besides that of pore formation. The pore forming activity of PlnC in whole cells was prevented by shielding lipid II on the cell surface. However, in contrast to nisin, PlnC was not able to permeabilize Lactococcus lactis cells or to form pores in 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes supplemented with 0.1 mol% purified lipid II. This emphasized the different requirements of these lantibiotics for pore formation. Using cell wall synthesis assays, we identified PlnC as a potent inhibitor of (i) lipid II synthesis and (ii) the FemX reaction, i.e., the addition of the first Gly to the pentapeptide side chain of lipid II. As revealed by thin-layer chromatography, both reactions were clearly blocked by the formation of a PlnC-lipid I and/or PlnC-lipid II complex. On the basis of the in vivo and in vitro activities of PlnC shown in this study and the structural lipid II binding motifs described for other lantibiotics, the specific interaction of PlnC with lipid II is discussed.
Neisseria gonorrhoeae is the agent of gonorrhea, a sexually transmitted infection with an estimate from The World Health Organization of 78 million new cases in people aged 15–49 worldwide during 2012. If left untreated, complications may include pelvic inflammatory disease and infertility. Antimicrobial treatment is usually effective; however, resistance has emerged successively through various molecular mechanisms for all the regularly used therapeutic agents throughout decades. Detection of antimicrobial susceptibility is currently the most critical aspect for N. gonorrhoeae surveillance, however poorly structured health systems pose difficulties. In this review, we compiled data from worldwide reports regarding epidemiology and antimicrobial resistance in N. gonorrhoeae, and highlight the relevance of the implementation of surveillance networks to establish policies for gonorrhea treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.