Recent advances in viral vector engineering, as well as an increased understanding of the cellular and molecular mechanism of retinal diseases, have led to the development of novel gene therapy approaches. Furthermore, ease of accessibility and ocular immune privilege makes the retina an ideal target for gene therapies. In this study, the nuclear hormone receptor gene Nr2e3 was evaluated for efficacy as broad-spectrum therapy to attenuate early to intermediate stages of retinal degeneration in five unique mouse models of retinitis pigmentosa (RP). RP is a group of heterogenic inherited retinal diseases associated with over 150 gene mutations, affecting over 1.5 million individuals worldwide. RP varies in age of onset, severity, and rate of progression. In addition,~40% of RP patients cannot be genetically diagnosed, confounding the ability to develop personalized RP therapies. Remarkably, Nr2e3 administered therapy resulted in reduced retinal degeneration as observed by increase in photoreceptor cells, improved electroretinogram, and a dramatic molecular reset of key transcription factors and associated gene networks. These therapeutic effects improved retinal homeostasis in diseased tissue. Results of this study provide evidence that Nr2e3 can serve as a broad-spectrum therapy to treat multiple forms of RP.
Reported is the adaptation of a manual polysaccharide assay applicable for glycoconjugate vaccines such as Prevenar to an automated liquid handling system (LHS) for improved performance. The anthrone assay is used for carbohydrate concentration determinations and was scaled to the microtiter plate format with appropriate mixing, dispensing, and measuring operations. Adaptation and development of the LHS platform was performed with both dextran polysaccharides of various sizes and pneumococcal serotype 6A polysaccharide (PnPs 6A). A standard plate configuration was programmed such that the LHS diluted both calibration standards and a test sample multiple times with six replicate preparations per dilution. This extent of replication minimized the effect of any single deviation or delivery error that might have occurred. Analysis of the dextran polymers ranging in size from 214 kDa to 3.755 MDa showed that regardless of polymer chain length the hydrolysis was complete, as evident by uniform concentration measurements. No plate positional absorbance bias was observed; of 12 plates analyzed to examine positional bias the largest deviation observed was 0.02% percent relative standard deviation (%RSD). The high purity dextran also afforded the opportunity to assess LHS accuracy; nine replicate analyses of dextran yielded a mean accuracy of 101% recovery. As for precision, a total of 22 unique analyses were performed on a single lot of PnPs 6A, and the resulting variability was 2.5% RSD. This work demonstrated the capability of a LHS to perform the anthrone assay consistently and a reduced assay cycle time for greater laboratory capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.