Maize is known to be susceptible to drought stress, which negatively affects vegetative growth and biomass production, as well as the formation of reproductive organs and yield parameters. In this study, 27 responsive traits of germination (G) and seedlings growth were evaluated for 40 accessions of the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) germplasm collection, under no stress and simulated drought stress treatments by 10%, 15%, and 20% of polyethylene glycol (PEG). The three treatments significantly reduced G% and retarded seedlings growth, particularly the 15% and 20% PEG treatments; these two treatments also resulted in a significant increase of abnormal seedlings (AS). The heritability (H2) and correlations of the traits were estimated, and drought tolerance indices (DTIs) were calculated for traits and accessions. The H2 of G% values were reduced, and H2 for AS% increased as the PEG stress increased. Positive correlations were found between most trait pairs, particularly shoot and root traits, with 48 highly significant correlations under no stress and 25 highly significant correlations under the 10% PEG treatments, particularly for shoot and root traits. The medium to high heritability of shoot and root seedling traits provides a sound basis for further genetic analyses. PCA analysis clearly grouped accessions with high DTIs together and the accessions with low DTIs together, indicating that the DTI indicates the stress tolerance level of maize germplasm. However, the resemblance in DTI values does not clearly reflect the origin or taxonomic assignments to subspecies and varieties of the examined accessions.
Background
The future productivity of wheat (T. aestivum L.) as the most grown crop worldwide is of utmost importance for global food security. Thousand kernel weight (TKW) in wheat is closely associated with grain architecture-related traits, e.g. kernel length (KL), kernel width (KW), kernel area (KA), kernel diameter ratio (KDR), and factor form density (FFD). Discovering the genetic architecture of natural variation in these traits, identifying QTL and candidate genes are the main aims of this study. Therefore, grain architecture-related traits in 261 worldwide winter accessions over three field-year experiments were evaluated.
Results
Genome-wide association analysis using 90K SNP array in FarmCPU model revealed several interesting genomic regions including 17 significant SNPs passing false discovery rate threshold and strongly associated with the studied traits. Four of associated SNPs were physically located inside candidate genes within LD interval e.g. BobWhite_c5872_589 (602,710,399 bp) found to be inside TraesCS6A01G383800 (602,699,767–602,711,726 bp). Further analysis reveals the four novel candidate genes potentially involved in more than one grain architecture-related traits with a pleiotropic effects e.g. TraesCS6A01G383800 gene on 6A encoding oxidoreductase activity was associated with TKW and KA. The allelic variation at the associated SNPs showed significant differences betweeen the accessions carying the wild and mutated alleles e.g. accessions carying C allele of BobWhite_c5872_589, TraesCS6A01G383800 had significantly higher TKW than the accessions carying T allele. Interestingly, these genes were highly expressed in the grain-tissues, demonstrating their pivotal role in controlling the grain architecture.
Conclusions
These results are valuable for identifying regions associated with kernel weight and dimensions and potentially help breeders in improving kernel weight and architecture-related traits in order to increase wheat yield potential and end-use quality.
Salinity is one of the major environmental factors that negatively affect crop development, particularly at the early growth stage of a plant and consequently the final yield. Therefore, a set of 50 wild barley (Hordeum vulgare ssp. spontaneum, Hsp) introgression lines (ILs) was used to detect QTL alleles improving germination and seedling growth under control, 75 mM, and 150 mM NaCl conditions. Large variation was observed for germination and seedling growth related traits that were highly heritable under salinity stress. In addition, highly significant differences were obtained for five salinity tolerance indices and between treatments as well. A total of 90 and 35 significant QTL were identified for ten investigated traits and for tolerance indices, respectively. The Hsp introgression alleles are involved in improving salinity tolerance at forty (43.9%) out of 90 QTL including introgression lines S42IL-109 (2H), S42IL-116 (4H), S42IL-132 (6H), S42IL-133 (7H), S42IL-148 (6H), and S42IL-176 (5H). Interestingly, seven exotic QTL alleles were successfully validated in the wild barley ILs including S42IL-127 (5H), 139 (7H), 125 (5H), 117 (4H), 118 (4H), 121 (4H), and 137 (7H). We conclude that the barley introgression lines contain numerous germination and seedling growth-improving novel QTL alleles, which are effective under salinity conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.