After three decades of developments, single particle tracking (SPT) has become a powerful tool to interrogate dynamics in a range of materials including live cells and novel catalytic supports because of its ability to reveal dynamics in the structure-function relationships underlying the heterogeneous nature of such systems. In this review, we summarize the algorithms behind, and practical applications of, SPT. We first cover the theoretical background including particle identification, localization, and trajectory reconstruction. General instrumentation and recent developments to achieve two- and three-dimensional subdiffraction localization and SPT are discussed. We then highlight some applications of SPT to study various biological and synthetic materials systems. Finally, we provide our perspective regarding several directions for future advancements in the theory and application of SPT.
Plasmon-coupled circular dichroism has emerged as a promising approach for ultrasensitive detection of biomolecular conformations through coupling between molecular chirality and surface plasmons. Chiral nanoparticle assemblies without chiral molecules present also have large optical activities. We apply single-particle circular differential scattering spectroscopy coupled with electron imaging and simulations to identify both structural chirality of plasmonic aggregates and plasmon-coupled circular dichroism induced by chiral proteins. We establish that both chiral aggregates and just a few proteins in interparticle gaps of achiral assemblies are responsible for the ensemble signal, but single nanoparticles do not contribute. We furthermore find that the protein plays two roles: It transfers chirality to both chiral and achiral plasmonic substrates, and it is also responsible for the chiral three-dimensional assembly of nanorods. Understanding these underlying factors paves the way toward sensing the chirality of single biomolecules.
We report a study of the shape-dependent spectral response of the gold nanoparticle surface plasmon resonance at various electron densities to provide mechanistic insight into the role of capacitive charging, a topic of some debate. We demonstrate a morphology-dependent spectral response for gold nanoparticles due to capacitive charging using single-particle spectroscopy in an inert electrochemical environment. A decrease in plasmon energy and increase in spectral width for gold nanospheres and nanorods was observed as the electron density was tuned through a potential window of -0.3 to 0.1 V. The combined observations could not be explained by existing theories. A new quantum theory for charging based on the random phase approximation was developed. Additionally, the redox reaction of gold oxide formation was probed using single-particle plasmon voltammetry to reproduce the reduction peak from the bulk cyclic voltammetry. These results deepen our understanding of the relationship between optical and electronic properties in plasmonic nanoparticles and provide insight toward their potential applications in directed electrocatalysis.
Plasmonic metal nanoparticles exhibit large dipole moments upon photoexcitation and have the potential to induce electronic transitions in nearby materials, but fast internal relaxation has to date limited the spatial range and efficiency of plasmonic mediated processes. In this work, we use photo-electrochemistry to synthesize hybrid nanoantennas comprised of plasmonic nanoparticles with photoconductive polymer coatings. We demonstrate that the formation of the conductive polymer is selective to the nanoparticles and that polymerization is enhanced by photoexcitation. In situ spectroscopy and simulations support a mechanism in which up to 50% efficiency of nonradiative energy transfer is achieved. These hybrid nanoantennas combine the unmatched light-harvesting properties of a plasmonic antenna with the similarly unmatched device processability of a polymer shell.
Plasmonic nanostructures offer promising applications as nanocatalysts, but optimizing their structure−function relationship using optical superlocalization techniques is hindered by the formation of distorted point spread functions (PSFs). Previously reported localization bias for remotely excited Alexa-647 adsorbed to Ag nanowires is investigated here for its potential to provide useful information about surface interactions. Two main classes of abnormal PSFs are examined: single-lobed PSFs, in which the localization bias arises from various emitter positions around the nanowire, and bilobed PSFs arising from emitters near the top edge of the nanowire. The amount of localization bias for these two populations diverges for ground truth widths less than 300 nm and suggests the latter adsorption and resulting orientation arise more frequently under experimental conditions than is predicted by simulation. Nanowires with widths in the range of 200 to 300 nm are found to have the greatest potential for distinguishing between single-lobed and bilobed PSFs in experiment. Finally, we present a fitting method for abnormal PSFs using a basis of Hermite−Gaussian functions and show that orientation information is encoded in bilobed PSFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.