We propose a novel method to exploit chirality of highly sensitive graphene plasmonic metasurfaces to characterize complex refractive indexes (RI) of viruses by detecting the polarization state of the reflected electric fields in the THz spectrum. A dispersive graphene metasurface is designed to produce chiral surface currents to couple linearly polarized incident fields to circularly polarized reflected fields. The metasurface sensing sensitivity is the result of surface plasmon currents that flow in a chiral fashion with strong intensity due to the underlying geometrical resonance. Consequently, unique polarization states are observed in the far-field with the ellipticity values that change rapidly with the analyte’s RI. The determination of bimolecular RI is treated as an inverse problem in which the polarization states of the virus is compared with a pre-calculated calibration model that is obtained by full-wave electromagnetic simulations. We demonstrate the polarization selective sensing method by RI discrimination of three different types of Avian Influenza (AI) viruses including H1N1, H5N2, and H9N2 is possible. Since the proposed virus characterization method only requires determination of the polarization ellipses including its orientation at monochromatic frequency, the required instrumentation is simpler compared to traditional spectroscopic methods which need a broadband frequency scan.
We report a novel guided-wave resonator that supports multiple bands of electromagnetically induced transparency (EIT). The platform for the spatial and spectral interference is obtained by a microstrip transmission line loaded with proximity-coupled open-circuited stubs. We show experimentally that with two microstrip open stubs, a complete destructive interference takes place leading to a single EIT band with near-unity transmission efficiency. More interestingly, the addition of a third stub results in a supplementary EIT band with a Q-factor of 147 and an effective group refractive index of 530. With the open-stub configuration, the EIT phase response can be dynamically controlled by varying the capacitance between the adjacent stubs without breaking the transmission path of the underlying electromagnetic waves. Therefore, the proposed structure is well suited for buffering and tunable phase modulation applications. Since the proposed structures are compact and fully planar, we anticipate seamless integration with low-profile high frequency electronics.
We experimentally achieve highly asymmetrical enhanced-Q Fano resonances in metallic electromagnetic structures fabricated on conductive planes. We show that the complete destructive interference mechanism of the dark and bright resonant modes generated by a pair of electromagnetically coupled open-ended conductive arms can lead to the asymmetric resonance characterized by a near-unity transparency window followed by a deep scattering band. With the incorporation of a variable capacitor between the coupled metallic strips, the dynamic tunability of the resonant modes is achieved, which can be exploited in high isolation switches and modulators in the GHz spectrum. The switching contrast of over 50 dB achieved through Fano resonance is much higher considering its compact size (i.e., the transmission path is much smaller than the wavelength λ/30). The dispersion based tunable Fano switch offers several advantages over conventional microelectromechanical system and CMOS based switches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.