The current upsurge in resistance to conventional antibiotics, as well as high cost of orthodox medical treatment, called for the use of medicinal plants as an alternative therapy. This research was aimed at determining the antibacterial activity of Artocarpus heterophyllus seed extracts (Jackfruit as it is locally called) in the treatment of diarrhoea. Ethanolic and hexanolic seed crude extracts of the plant were screened for antidiarrhoeal activity against bacteria isolated from clinical samples (methicillin-resistant and susceptible Staphylococcus aureus, multidrug-resistant Pseudomonas aeruginosa, ciprofloxacin-resistant Salmonella typhimurium, and third-generation cephalosporin-resistant Escherichia coli). Plant phytochemical screening was conducted using standard methods. The antibacterial activity was carried out using the agar well diffusion method and compared to the standard antibiotics ceftriaxone and vancomycin. The minimum inhibitory concentration was determined by the microbroth dilution method, whereas the minimum bactericidal concentration was determined by plating out from microtitre plates with no visible growth. The results of phytochemical screening revealed the presence of tannins, flavonoids, reducing sugars, cardiac glycosides, saponins, and steroids from the prepared crude extracts. The ethanolic and hexanolic extracts had activity on multidrug-resistant Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and methicillin-susceptible Staphylococcus aureus with the mean and standard error zone of inhibition that ranged from 8.5 ± 0.5 to 16.5 ± 0.25 mm; however, the extracts were found not to have activity on resistant E. coli and Salmonella typhimurium. The ethanolic crude extract had the lowest MIC and MBC values of 31.25 and 125 mg/ml, respectively, compared to the hexane extract which had the MIC and MBC values of 62.50 and 250 mg/ml, respectively. This provides the evidence for its usage as an alternative herbal remedy for the treatment of diarrhoea caused by susceptible and methicillin-resistant Staphylococcus aureus and multidrug resistant Pseudomonas aeruginosa.
The development of resistance of microorganisms to conventional antibiotics is a major global health concern; hence, there is an increasing interest in medicinal plants as a therapeutic option. This study aimed to evaluate the antibacterial, anti-biofilm, and anti-quorum activities of crude extracts prepared using various solvents of nine indigenous South African plants used locally for the treatment of diarrhoea. The minimum inhibitory concentration (MIC) was determined using the broth microdilution method and the crystal violet assay was used to test the anti-biofilm activity of the extracts against a panel of bacteria. Anti-quorum sensing activity of the extracts was assessed via inhibition of violacein production in Chromobacterium violaceum ATCC 12472. Preliminary screening of extracts against E. coli ATCC 25922 revealed that the acetone extracts had significant activity, with MIC values ranging from 0.04 to 0.63 mg/mL. Further screening against a panel of bacterial pathogens showed that the acetone extract of Bauhinia bowkeri was the most active with MIC of 0.01 mg/mL against Salmonella enteritidis, followed by Searsia lancea with MIC of 0.03 mg/mL against Bacillus cereus. All the plant extracts prevented the attachment of biofilms by more than 50% against at least one of the tested bacteria. However, only the mature biofilm of B. cereus was susceptible to the extracts, with 98.22% eradication by Searsia pendulina extract. The minimum quorum sensing inhibitory concentration of the extracts ranged from 0.08 to 0.32 mg/mL with S. lancea having the most significant activity. The extract of S. lancea had the best violacein production inhibitory activity with IC50 value of 0.17 mg/mL. Overall, the results obtained indicate that acetone extracts of S. leptodictya, S. lancea, S. batophylla, S. pendulina, B. galpinii, and B. bowkeri possess antibacterial and anti-biofilm activities and can modulate quorum sensing through the inhibition of violacein production. Therefore, these results signify the potential of the selected plant extracts in treating diarrhoea through inhibition of bacterial growth, biofilm formation inhibition, and quorum sensing antagonism, supporting their medicinal use.
Aim:The study assessed and compared the antibacterial activities of different honey types in Southwest Nigeria. It also compared antibacterial potency of the honey with a standard antibiotic. This was with a view to ascertain and providing information on cheaper alternative potent antibacterial product of natural source as well to confirm the antibacterial efficacy of the honey in Southwest, Nigeria. Materials and Methods: The sensitivity testing of honey samples was determined using agar-well diffusion method. The minimum inhibitory concentration of honey samples was determined using broth tube dilution method. Minimum bactericidal concentration of honey samples was determined. The data obtained were analyzed with appropriate statistical methods. Results: The zone of inhibitions exhibited by all honey samples against the test bacteria ranged between 6 ± 0.0 and 30.7 ± 1.2 mm. The death rate ranges between 52.1% and 94.6% in the dark amber honey sample (H9) after 120 min of contact time at the same concentration. Conclusion: In this study, super dark amber honey shows the highest antimicrobial property which compared favorably with the standard antibiotic (streptomycin). This honey has shown to have a potent broad spectrum antibacterial activity. However, further studies are recommended to assess its practicality in terms of use in the clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.