This study was carried out to investigate abundance, distribution, structure and conservation status of three major ungulate species viz.
Named Data Networking is an evolving network model of the Information-centric networking (ICN) paradigm which provides Named-based data contents. In-network caching is the responsible for dissemination of these contents in a scalable and cost-efficient way. Due to the rapid expansion of Internet of Things (IoT) traffic, ICN is envisioned to be an appropriate architecture to maintain the IoT networks. In fact, ICN offers unique naming, multicast communications and, most beneficially, in-network caching that minimizes the response latency and server load. IoT environment involves a study of ICN caching policies in terms of content placement strategies. This paper addressed the caching strategies with the aim to recognize which caching strategy is the most suitable for IoT networks. Simulation results show the impact of different IoT ICN-based caching strategies, out of these; periodic caching is the most appropriate strategy for IoT environments in terms of stretch that results in decreasing the retrieval latency and improves the cache-hit ratio.
It is predicted that by 2025, all devices will be connected to the Internet, subsequently causing the number of devices connected with the Internet to rise [...]
One of the key applications for the Internet of Things (IoT) is the eHealth service that targets sustaining patient health information in digital environments, such as the Internet cloud with the help of advanced communication technologies. In eHealth systems, wireless networks, such as wireless local area networks (WLAN), wireless body sensor networks (WBSN), and wireless medical sensor networks (WMSNs), are prominent technologies for early diagnosis and effective cures. The next generation of these wireless networks for IoT-based eHealth services is expected to confront densely deployed sensor environments and radically new applications. To satisfy the diverse requirements of such dense IoT-based eHealth systems, WLANs will have to face the challenge of assisting medium access control (MAC) layer channel access in intelligent adaptive learning and decision-making. Machine learning (ML) offers services as a promising machine intelligence tool for wireless-enabled IoT devices. It is anticipated that upcoming IoT-based eHealth systems will independently access the most desired channel resources with the assistance of sophisticated wireless channel condition inference. Therefore, in this study, we briefly review the fundamental models of ML and discuss their employment in the persuasive applications of IoT-based systems. Furthermore, we propose Q-learning (QL) that is one of the reinforcement learning (RL) paradigms as the future ML paradigm for MAC layer channel access in next-generation dense WLANs for IoT-based eHealth systems. Our goal is to contribute to refining the motivation, problem formulation, and methodology of powerful ML algorithms for MAC layer channel access in the framework of future dense WLANs. This paper also presents a case study of next-generation WLAN IEEE 802.11ax that utilizes the QL algorithm for intelligent MAC layer channel access. The proposed QL-based algorithm optimizes the performance of WLAN, especially for densely deployed devices environment.
Internet of Drones (IoD) architecture is designed to support a coordinated access for the airspace using the unmanned aerial vehicles (UAVs) known as drones. Recently, IoD communication environment is extremely useful for various applications in our daily activities. Artificial intelligence (AI)-enabled Internet of Things (IoT)-based drone-aided healthcare service is a specialized environment which can be used for different types of tasks, for instance, blood and urine samples collections, medicine delivery and for the delivery of other medical needs including the current pandemic of COVID-19. Due to wireless nature of communication among the deployed drones and their ground station server, several attacks (for example, replay, man-in-the-middle, impersonation and privileged-insider attacks) can be easily mounted by malicious attackers. To protect such attacks, the deployment of effective authentication, access control and key management schemes are extremely important in the IoD environment. Furthermore, combining the blockchain mechanism with deployed authentication make it more robust against various types of attacks. To mitigate such issues, we propose a private-blockchain based framework for secure communication in an IoT-enabled drone-aided healthcare environment. The blockchain-based simulation of the proposed framework has been carried out to measure its impact on various performance parameters. CCS CONCEPTS • Networks → Security protocols; • Security and privacy → Authentication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.